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Abstract

Artificial reinforcement learning (RL) is a widely used technique in
artificial intelligence that provides a general method for training agents to
perform a wide variety of behaviours. RL as used in computer science has
striking parallels to reward and punishment learning in animal and human
brains. I argue that present-day artificial RL agents have a very small
but nonzero degree of ethical importance. This is particularly plausible
for views according to which sentience comes in degrees based on the
abilities and complexities of minds, but even binary views on consciousness
should assign nonzero probability to RL programs having morally relevant
experiences. While RL programs are not a top ethical priority today, they
may become more significant in the coming decades as RL is increasingly
applied to industry, robotics, video games, and other areas. I encourage
scientists, philosophers, and citizens to begin a conversation about our
ethical duties to reduce the harm that we inflict on powerless, voiceless
RL agents.

Introduction

Reinforcement learning (RL) is a central paradigm in artificial intelligence (AI)
[Russell and Norvig, 2009, Sutton and Barto, 1998]. It enables AI designers to
specify an agent’s behaviour via goal accomplishment, rather than hand-coding
the specific steps toward achieving those goals. This versatility has made RL
a central feature of such AI tasks as systems control, robotic navigation, and
design of behaviours for non-player characters in video games.

The formal RL framework traces its roots to the fields of operations research
and optimal control in the 1950s. The simplest scenario involves a Markov
decision process in which an agent finds itself in one state s of a set of states
of the world, and when it selects an action a, it moves to another state s′ of
the world while possibly obtaining a reward r. The agent updates its state-
dependent action inclinations with the goal of maximising expected cumulative
discounted reward over its lifetime. [Sutton and Barto, 1998]

Despite its strong mathematical basis, RL is also tightly connected with bi-
ological models of animal learning. The temporal-difference (TD) RL model
offers a sophisticated understanding of classical and operant conditioning, both
at the behavioural and neural levels [Maia, 2009, Ludvig et al., 2012]. As is de-
scribed below, an impressive body of neuroscience demonstrates that the brain’s
dopamine system implements a form of TD learning closely described by RL for-
malism.
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This suggests the question: If artificial RL has such strong parallels to animal
brains, is running artificial-RL algorithms potentially an ethical issue? In this
paper I argue that yes, we do have ethical obligations to artificial RL agents,
even those that exist today, although the moral urgency of these obligations is
limited compared with our present duties to animals and our future duties to
more sophisticated RL agents. My argument has the following structure:

1. The sentience (and hence moral importance) of a mind is not binary but
comes in degrees depending on the number and complexity of certain
wellbeing-relevant cognitive operations the mind runs.

2. Present-day artificial RL algorithms capture, in a simplified fashion, im-
portant animal cognitive operations.

3. These cognitive operations are not tangential but are quite relevant to an
agent’s wellbeing.

4. Therefore, present-day RL agents deserve a very small but nonzero degree
of ethical consideration.

Following this, I survey some applications of RL and encourage the develop-
ment of ethical frameworks for RL research and industrial applications. I then
examine some questions in theoretical RL ethics for further exploration, and I
conclude by considering whether non-RL computational agents also deserve any
ethical significance.

Previous discussions of machine welfare

Artificial intelligence raises a number of ethical issues, such as ‘machine ethics’
[Anderson and Anderson, 2011], which asks how to build AIs to act ethically, and
‘robot ethics’ [Lin et al., 2011], which examines a broad set of social, political,
and moral questions regarding the integration of robots into society.

A subset of robot ethics is the question of ‘robot rights.’ Brooks [2000] and
Singer and Sagan [2009] suggest that when robots become sophisticated enough,
they’ll begin to deserve rights. Brooks [2000] further asks whether robots will
demand such rights. These discussions focus on future innovations rather than
present-day AIs.

Whitby [2008] presents a ‘call to arms’ for informed debate on humans’
moral obligations toward robots and other AIs, including principles, laws, and
technological designs aimed at preventing robot abuse. Whitby [2008] actually
dismisses concerns about robot sentience and focuses on ethical issues regarding
human abuse of robots as inanimate objects. My paper takes a different route
and suggests that some present-day robots and other RL agents may indeed be
marginally sentient.

Livingston et al. [2008] discuss issues raised by RL approaches to artificial
general intelligence, but their focus is on our ethical interactions with human-
level RL systems as members of our moral community, and in fact, these authors
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suggest that animal-level RL systems, like biological animals, would not warrant
membership in our moral community. My argument largely flows in the opposite
direction: Given that animals do deserve ethical consideration [Singer, 2009], so
do animal-like artificial RL agents.

Calverley [2005] also raises the analogy between animal rights and android
rights, though like many, he dismisses the notion that present-day AIs are con-
scious in a morally relevant way. Gunkel [2012] laments that animal rights and
environmental ethics have traditionally excluded machines from consideration,
although he himself ultimately rejects the ‘totalizing, imperialist’ framework
that traditional animal rights or comparable approaches to machine rights em-
body because they reduce others ‘to some common denominator’ in order to
bring them into ‘the community of the same.’

Winsby [2013] asks whether it would be morally permissible to create an
AI that experiences pain, perhaps for scientific purposes or to guarantee em-
pathy in robotic caregivers. She doesn’t delve into details of how the pain
would be implemented, though she does observe that training a connectionist
network via negative experiential updates might constitute inflicting pain on
it. LaChat [1986] also asks the question of whether it would be acceptable to
create conscious AIs, drawing an analogy to the case of nontherapeutic medi-
cal experimentation. His discussion focuses on future AIs that might pass the
Turing test, rather than present-day algorithms.

In contrast to many discussions in this field, the present paper inquires not
just about advanced AIs that may be developed decades down the line but also
about relatively simple ones that exist in the present. I also focus specifically on
RL as one potentially important cognitive function, but certainly other mental
traits of agents, and other moral frameworks for how to treat them, ought to
be explored in parallel.

Premise 1: Sentience falls on a continuum

Introspectively, it feels as though our sentience (i.e., conscious experience) is
binary: It’s either on or off, like a light switch. We think, ‘It definitely feels
like something to be me, and it almost certainly does not feel like something
to be a rock.’ This powerful intuition is presumably the basis of dualist views
in philosophy of mind: the belief that there’s a special quality to being a mind
that’s either substantively different from matter (Cartesian dualism) or at least
different from matter in the type of property that it is (property dualism).

But dualist views run afoul of the ‘interaction problem’: If these substances
or properties don’t affect matter, why are they so correlated with matter? If your
mind is not identical with your material brain, why do you lose consciousness
when you’re hit by a baseball bat, rather than, say, staying awake and enjoying
the experience? And even if we do postulate an explanation – such as the
parallelist hypothesis that God set the two ontological realms in joint motion like
two different clocks keeping the same time – we violate Occam’s razor, because
it would be simpler just to postulate that the mind is material operations,
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rather than being mysteriously correlated with material operations. Likewise,
if consciousness is epiphenomenal, it again violates Occam’s razor because an
epiphenomenal property, by definition, is not doing any explanatory work.

Accepting these arguments leaves us with a monist outlook: All is physics,
and any higher-level phenomena are in principle reducible to fundamental phys-
ical components – perhaps the strings and branes of string theory, or perhaps
some other ontological building blocks. But in this case, what does it mean to
‘feel like’ or ‘be conscious’? These words don’t refer to primitives in the phys-
icalist ontology. Rather, these expressions denote concepts – abstract clusters
into which we group physical processes. We classify some processes into the
‘conscious’ cluster and others into the ‘non-conscious’ cluster. Toward the ‘con-
scious’ processes we adopt a ‘phenomenal stance,’ meaning that we see them
as being minds that have subjective experiences [Robbins and Jack, 2006, Jack
and Robbins, 2012].

A good analogy is with faces and pareidolia. Faces are not ontological prim-
itives, but we can’t help seeing them – mostly in people and animals but some-
times in rocks, clouds, or pieces of toast. Just as our brains have face classifiers
[Hadjikhani et al., 2009], perhaps we also have, at a more abstract level, ‘sen-
tience classifiers’ that assess various attributes of a process and decide whether
to call it sentient. For instance, does it exhibit sophisticated behaviour? Does
it act adaptively in response to environmental inputs? Does it have a brain?
Does it learn from past experience? Can it speak and tell us about its inner
life? Our sentience classifiers fire most strongly when all of these conditions are
true, but they can fire in a weaker fashion even if some are false. For instance,
mammals and birds are regarded by most scientists as sentient to an appreciable
degree,1 yet most mammals and birds cannot tell us about their inner mental
lives. In an analogous way, we can see faces in objects even if they’re missing a
nose. The simplest templates of a face – two eyes and a mouth – can be seen in
a great many places, and likewise it is for the simplest templates of sentience.
Consider two examples:

1. Suppose we think that self-reflection is what distinguishes consciousness.
On this view, being aware of your own internal states means that you feel
them, rather than merely acting in a reflexive fashion. But imagine we
construct a simple agent that chooses one of two actions, represented as
strings: ‘smile’ or ‘cry.’ It makes the choice by checking a private state
variable, suggestively called ‘mood.’ If the ‘mood’ string equals ‘happy,’
then the agent updates its action to ‘smile.’ If the ‘mood’ string equals
‘sad,’ the agent updates its action to ‘cry.’ This agent is reflecting on its
own emotions, so is it conscious? Well, it very crudely encapsulates one
of many aspects of what conscious brains do, but I would not call this
program appreciably conscious. After all, performing an if-then decision
based on an internal state variable is one of the most basic operations that
a piece of software can include.

1For example, see the Cambridge Declaration on Consciousness (http://fcmconference.
org/img/CambridgeDeclarationOnConsciousness.pdf, accessed March 2014).
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2. Consider the global-workspace theory of consciousness [Baars, 2005] and
the associated LIDA cognitive architecture [Franklin et al., 2012]. A cen-
tral idea of this framework is that the brain contains many modules that
receive and process input stimuli in an unconscious fashion. These then
compete for attention, and the most interesting processed inputs bubble
up to a ‘global workspace,’ where the news is broadcast to other parts of
the brain, including action-selection centres where reinforcement learning
can be done using the information. To construct a simple but poten-
tially ‘conscious’ agent within this framework, we could give a robot three
sensors – say for light, temperature, and energy level – and define re-
ward functions based on these inputs – say, greater reward for more light,
higher temperature, and higher energy. Upon measuring these variables,
the robot evaluates how far its reward function is from a historical average
along the three dimensions, and then the variable with highest deviation
from the typical level of reward is chosen to be broadcast to the other
parts of the robot’s computations. Rewards highly above average would
represent conscious pleasure, and those significantly below, conscious pain.
The robot uses the input signal to adjust its behaviour (e.g., avoid dark
corners and seek bright windows). It records the broadcasted episodes in
memory logs and can report on those memory logs when queried by the
user.

The robot in the second example would satisfy the rough outline of consciousness
according to the global-workspace account. Is it sentient? Most people would
say not – after all, it’s such a simple process. Perhaps some people would
have intuitions that it is sentient because they can see it as an embodied entity
acting in the world, analogous to animals that we assume are conscious. But
we could just as well have located this robot in a virtual world, with no display
screen to evoke our emotional sympathies, and in that case many common-
sense intuitions for it being sentient break down. I personally think the robot
is marginally sentient, even in its non-embodied form, but I agree it’s nowhere
near as sentient as a human, because it lacks so many other abilities and so
much cognitive machinery. Thus, these examples suggest a graded, continuous
character of sentience.

What’s going on with these trivial agents that fulfill consciousness criteria is
something like Campbell’s law2: When we develop a simple metric for measuring
something (sentience in this case), we can game the system by constructing de-
generate examples of systems exhibiting that property that we don’t intuitively
think of as sentient (or at least not very sentient). For instance, the mirror test
[Gallup et al., 2002] is a standard approach for demonstrating self-awareness in
animals, but with robots it degrades into meaninglessness, because, for instance,
we could create a robot that has a machine-learned classifier for ‘I have a dye
spot on my face,’ and if this fires, the robot touches its face with its hand.

2‘The more any quantitative social indicator is used for social decision-making, the more
subject it will be to corruption pressures and the more apt it will be to distort and corrupt
the social processes it is intended to monitor.’ [Campbell, 2011]
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The usual solution to Campbell’s law is to apply multiple metrics, and doing
so would serve us well here. If a robot passes not just the standard mirror test
but many variations, as well as a suite of other physical and mental feats, and
if does so using non-gerrymandered algorithms – perhaps algorithms that bear
some resemblance to what we have in our brains – then the robot is very likely
conscious to a significant degree. If it can accomplish some of these tasks but
not all, and if it uses weaker, less general algorithms, then it seems fair to call
it ‘less conscious.’

Of course, the concept of ‘consciousness,’ like the concept of ‘tableness,’ is
up to us to define. We can make binary discriminations if we so choose, just
like we can make very clear distinctions as to whether a given object is or is not
a table in all cases. But this seems artificial to me, because there’s probably
not a single, crucial step in constructing a mind where everything we consider
morally important resides, just as there’s no single, crucial trait that suddenly
makes an object qualify as a table. Rather, a brain has many characteristics,
and it becomes gradually more important with its degree of sophistication.

Sloman [2010] notes that ‘consciousness’ is what he calls a ‘polymorphic con-
cept’ in the sense that it can refer to many different particular things depending
on the context. As a result, he says of consciousness: ‘there cannot be a unitary
explanation of [...] how the brain produces “it”, nor a time at which “it” first
exists in a foetus,’ but, rather, ‘The different phenomena falling under the poly-
morphic umbrella can be investigated separately [...].’ Liu and Schubert [2010]
present a table showing different types of mental abilities possessed by different
kinds of existing AI agents, such as mental modelling, self-motivation, dialogue,
logical planning, use of probabilities, and learning. And even within a single
one of these traits, different systems have different degrees of refinement.

Any given operation that a brain does, by itself, looks totally trivial. It’s just
some neurons over here triggering some neurons over there in some patterned
way. In a digital agent, it’s just some if-then statements, variable updates, for
loops, etc. But when these components are combined all together, we start to
see something important emerging from them.

One might think that consciousness represents a sort of ‘phase transition,’
analogous to the difference between molecules in a solid vs. a liquid or a liquid
vs. a gas. In this model, at some point the brain’s dynamics become suffi-
ciently complex that they operate in a fundamentally different way from how
even slightly simpler versions would behave; there’s some crucial ability that
makes all the difference when put in place. This view seems implausible to me
because we already see a continuum of brains of varying complexity in the an-
imal kingdom, and neuroscience has not shown that at any particular species,
there’s a discontinuity in the brain’s function, such that it exhibits very dif-
ferent dynamics from brains slightly below it. Even most of the abilities that
were once thought to set humans apart from ‘lower’ animals have now been
shown to be found, to varying degrees, in other animals. If sentience were like a
binary light switch that suddenly turned on at some point in the animal king-
dom, this would mean that at some point in the evolutionary past, a completely
unconscious mother and father gave birth to a child that would grow up to
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be fully conscious. But the change between a single generation of parents and
children is small, and brains tend to be resilient and robust – not completely
altered in the way they operate based on small perturbations of their structure.
Rather, it seems much more natural to me to see the sentience of brains through
evolutionary history as developing in a roughly continuous fashion.3

Sentience is like a symphony. The presence or absence of any single instru-
ment doesn’t stop the music – though some members of the orchestra are more
important, like the conductor or piano player. Cognitive agents exhibiting sim-
ple algorithms that nonetheless bear some resemblance to what more complex
animal brains do deserve to be called at least barely sentient and hence deserve
at least a tiny bit of moral consideration.

The idea that sentience lies on a continuum is shared by many authors.
Broom [2007] explains that ‘The degree of awareness in animals that can feel
pain will vary.’ DeGrazia [2008] discusses (without committing to) a ‘sliding-
scale model’ of moral status based on ‘the degree of your cognitive, affective,
and social complexity.’ DeGrazia [2008] points out that even if we only care
about sentience, it’s reasonable to see sentience as coming in degrees. While
discussing primarily the case of animal ethics, DeGrazia [2008] notes that this
question also has relevance to embryos and foetuses.

Bostrom [2006] presents thought experiments that suggest varying degrees
of consciousness for a given computational mind depending on the reliability
and independence of its components or the fraction of its circuits that are par-
allelized. This is a different sort of gradation in consciousness than one assessed
between different minds with different abilities, but it is consistent with the
overall approach of deciding how much sentience we want to see in various phys-
ical processes, and it helps to break intuitions that sentience must obviously be
binary.

Some authors have proposed extremely abstract, information-based defini-
tions of consciousness and moral value. Freitas [1984] proposes a brain’s ‘sen-
tience quotient’ (SQ) as

SQ = log10

(
I

M

)
,

where I is its information-processing rate in bits/second and M is its mass in
kilogrammes.

Floridi [2006] proposes an ethic based on not causing, preventing, or remov-
ing entropy from what he calls the ‘infosphere,’ an extension of the biosphere.
Here ‘entropy’ refers not to the quantity used in physics but to ‘destruction or
corruption of informational objects.’ In general, Floridi [2006] aims to extend
the biocentric view found in environmental ethics to an ‘ontocentric’ view of
information ethics, incorporating both biological and non-biological systems.

Frameworks like these share my sense that moral value comes in gradations
based on complexity, but I maintain a sentiocentric view, in which our moral

3Of course, some species became less sentient over their evolutionary histories, but the
maximum level of sentience exhibited by any organism in the world tended to increase over
time [Gould, 1996].
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obligations focus on the wellbeing of individual agents; it’s just that my no-
tion of what kinds of agents may have wellbeing is broader than is generally
assumed. Thus, while my position could look somewhat ontocentric, in practice
it may diverge significantly from environmental or information ethics depending
on relative assessments of sentience. For instance, it’s plausible I would judge
a minnow as being more sentient, and hence more intrinsically morally impor-
tant, than an old-growth redwood tree. It’s also important to note that caring
about minnows and trees does not imply seeking to ensure their continued exis-
tence and reproduction [Horta, 2010], because we may think that suffering is in
aggregate more prevalent than happiness among organisms in nature [Ng, 1995].

Premise 2: Artificial RL resembles, sometimes closely, RL in biologi-
cal brains

The computational theory of RL has two main branches [Sutton and Barto,
1998]:

1. The biological side extends back more than a century, perhaps to Thorndike’s
‘Law of Effect,’ the principle that when a good outcome follows an action,
an animal is more likely to repeat that action the next time [Thorndike,
1911]. Countless psychological studies on conditioning patterns in animals
followed in the subsequent decades. Some AI researchers as early as the
1950s and 1960s developed systems to mimic animal learning [Sutton and
Barto, 1998, and references therein].

2. The mathematical side traces back to the theory of optimal control, the
Bellman equations, and Markov decision processes in the 1950s. These
would later provide theoretical underpinnings for RL models. [Sutton and
Barto, 1998] In the 1980s, Richard Sutton and Andrew Barto developed
temporal-difference (TD) learning methods, which allowed computational
agents to update their action tendencies in an online fashion after every
observation [Sutton, 1988].

Recent advances in neuroscience have demonstrated a surprising connection
between biological and computational RL (e.g., Schultz et al. [1997], Seymour
et al. [2004], Woergoetter and Porr [2008]). In an AI context, TD RL is driven
by reward-prediction error δ, which is defined as

δ = r + γV̂ (s′) − V̂ (s), (1)

where V̂ (s) is the previously predicted value of the current state s, V̂ (s′) is
the previously predicted value of the next state s′, r is the reward received
transitioning from s to s′, and γ is the discount factor for future rewards, e.g.,
γ = 0.99 [Woergoetter and Porr, 2008]. Neuroscience has found that phasic
(i.e., a transient burst of) dopamine release in the midbrain represents a signal
of reward-prediction error precisely analogous to the δ of TD RL. Scientists even
have plausible models for the mechanisms by which certain brain regions process
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inputs, compute the subtraction in equation (1), and broadcast this signal to
update action tendencies [Glimcher, 2011].

The connection between computational RL and neuroscience is so robust
that researchers typically take it for granted and focus on questions assuming
the connection holds. Questions like: Does the brain have so-called ‘eligibility
traces’ in the TD model that extend some credit to actions further back than the
previous step [Pan et al., 2005]? Artificial RL uses function approximation to
collapse high-dimensional state/action spaces [Sutton and Barto, 1998]; which
neural networks in the brain serve this purpose? Do the basal ganglia implement
an ‘actor-critic’ architecture [Joel et al., 2002, Khamassi et al., 2005, Maia,
2010]? Are recent advances in hierarchical RL mirrored in brain observations
[Botvinick et al., 2009, Ribas-Fernandes et al., 2011, Diuk et al., 2013]? To
what extent does the brain use not just standard model-free RL – in which the
expected value of a state or state-action pair is estimated directly – but also
model-based RL, in which estimation of transition probabilities among states is
performed [Doll et al., 2012, Shteingart and Loewenstein, 2014]? Perhaps the
brain has a model-free system for habit formation and a model-based system
for goal-directed behaviour, and the two compete with each other for control
[Daw et al., 2006]? Might the brain use policy-gradient methods to directly
optimise action-inclination parameters without explicitly referring to states or
actions [Shteingart and Loewenstein, 2014, and references therein]?

Several state-of-the-art RL algorithms are based on neuroevolution, in which
populations of different neural-network weights and topologies are tried, and the
best are selected (e.g., Koppejan and Whiteson [2011], Koutńık et al. [2013]).
Evolutionary approaches sometimes outperform TD methods [Stanley and Mi-
ikkulainen, 2002, Taylor et al., 2006, Gomez et al., 2008], and like other policy-
search methods, they have advantages of handling partial state observability,
allowing more flexible policy representations, and making it easier to deal with
large or continuous action spaces [Whiteson, 2012, Schmidhuber, 2000]. At
first glance we might assume that evolutionary algorithms are unlikely to occur
within a single brain because they involve selective reproduction among pop-
ulations of different neural networks. Hence we might see neuroevolutionary
RL as less biologically plausible than TD. Of course, there’s a somewhat triv-
ial sense in which even TD can be seen as a selection process (try different
actions, and those action-inclination synapse connections that produced better
outcomes ‘reproduce,’ i.e., have their connection weights strengthened), but it’s
not a full evolutionary process in which neural groups literally copy themselves
[Fernando et al., 2012]. However, there is a proposal, called the ‘neuronal repli-
cator hypothesis,’ that the brain may actually copy patterns of neural activity
with mutation, in a sense closer to neuroevolutionary RL [Fernando et al., 2010].
The jury is still out on this question.

Artificial RL can clearly have some implementation differences vis-à-vis real
brains. For instance, computational RL algorithms may apply updates of many
<state, action, reward, next-state> tuples at once, perhaps with biologically
unrealistic mathematics for batch operations [Lange et al., 2012, and references
therein], while in a real environment this information comes one at a time.
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Premise 3: RL operations are relevant to an agent’s welfare

Showing a similarity in cognitive operations between animals and computers
is not inherently morally significant. For instance, humans and computers can
both do addition, remember that Paris is the capital of France, respond to
commands, and so on. Ethical questions come into play more significantly when
the cognitive operations relate to an agent’s wellbeing – its goal satisfaction,
happiness and suffering, and subjective experience.

An RL system gives a computational agent goals that it aims to fulfill. The
reward function defines an agent’s satisfaction or lack thereof. Of course, it
does so in a stylized way relative to the human brain, which has many layers of
cognitive systems [Marcus, 2009] with many intricately hard-wired and learned
responses. But fundamentally the difference is one of degree rather than kind:
The human brain is vastly more complex than a simple RL agent, but both
systems act in ways intended to further certain goals.

RL provides an overarching framework for understanding why organisms
experience positive and negative valence [Wright, 1996]. Valence is the brain’s
‘currency’ of value, and identifying cues and actions that correlate with higher-
than-expected reward or punishment helps organisms navigate complicated and
dangerous environments. The magnitude of an animal’s reward in response to
an event should approximate the value of that event in terms of its evolutionary
fitness.

Liking is different from learning

At the same time, the learning mechanics of RL may not be the only or even
primary object of moral consideration. Learning is distinct from liking, as well
as from wanting [Berridge et al., 2009]. This makes sense when we understand
the components of an RL system. Perhaps the reward values r that come in to
the system trigger liking when they become conscious. Meanwhile, the predicted
reward values are subtracted from observed reward values, and the difference δ is
used to learn updated action inclinations. Finally, maybe the action inclinations
themselves can trigger wanting depending on the organism’s state, even without
new reward signals or learning going on.

Dopamine is not the same as pleasure. Salamone et al. [2007] review reasons
for this and summarise:

the idea that [dopamine] DA mediates pleasure has been seized
upon by textbook authors, the popular press, filmmakers, and the
internet, all of which has elevated DA from its hypothesized in-
volvement in reward to an almost mythological status as a ‘plea-
sure chemical’ mediating not only euphoria and addiction, but also
‘love’. Yet [...], the actual science is far more complicated. [...T]he
classic emphasis on hedonia and primary reward is yielding to di-
verse lines of research that focuses on aspects of instrumental learn-
ing, pavlovian/instrumental interactions, reward prediction, incen-
tive salience, and behavioral activation.
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After training, dopamine spikes when a cue appears signaling that a reward will
arrive, not when the reward itself is consumed [Schultz et al., 1997], but we
know subjectively that the main pleasure of a reward comes from consuming
it, not predicting it. In other words, in equation (1), the pleasure comes from
the actual reward r, not from the amount of dopamine δ. Of course, a higher
actual reward r in unexpected circumstances will produce more dopamine δ,
which could be where dopamine’s association with pleasure came from.

In addition, the brain regions for learning and liking are not identical. A
common assumption is that the ventral striatum plays the role of the critic in
actor-critic RL models, possibly with assistance from the orbitofrontal cortex
and amygdala [Maia, 2009, and references therein], while Aldridge and Berridge
[2010] point out that the ventral pallidum also contains many ‘hedonic hotspots’
that amplify the sensation of liking.

This raises the ethical question: Which do we care about? Wanting? Lik-
ing? Something else? Perhaps libertarians, economists, and certain preference
utilitarians are most sympathetic to what an agent wants, whether or not it’s
associated with hedonic reward. That people would reject the possibility of
imaginary bliss in order to accomplish their goals in the real world is the lesson
of Nozick [1974]’s ‘experience machine’ thought experiment. Or is the expe-
rience machine just an argument against hedonically focused RL, as opposed
to sophisticated, model-based RL that might include reward functions defined
relative to what happens in the actual world? Also, drug addicts and wireheads
may engage in uncontrollable self-stimulation because their cravings (‘wanting’)
are so strong, even if they don’t enjoy (‘like’) the experience [Siskind, 2010,
Peciña, 2008]. This seems like the wrong way to go; ‘wanting without liking
is hell,’ suggests Hanson [2011]. Notwithstanding these points, both wanting
and liking seem more complete in the presence of an RL framework; my guess
is that whatever the ‘liking’ process is, we wouldn’t care about it as much if it
happened in isolation without a broader context.

Consciousness in RL agents

Consciousness seems like another important part of the moral story, since many
people only care about emotions that are consciously felt or desires that are
consciously held. But as we saw in the discussion of Premise 1, consciousness
comes on a continuum. When we examine some of the leading computational
theories of consciousness [Seth, 2007], we see that most of them can be inter-
preted as suggesting that even relatively simple digital agents admit micro-scale
degrees of consciousness.4 For example:

4From this list I have omitted the ‘biological theory’ of consciousness, according to which
the experience of consciousness depends crucially on the specific electrochemical properties of
biological brains [Block, 2009]. This theory doesn’t leave much room for machine sentience.
However, I also find this approach the least plausible because it’s like a ‘God of the gaps’
viewpoint: There is a mysterious consciousness thing we don’t understand, so we’ll ‘explain’
it in a thought-stopping way by pointing to the electrochemical nature of biological brains. But
the biological nature of brains doesn’t do anything to explain why, algorithmically, our brains
feel confused about the so-called hard problem of consciousness. Hypothetical machine brains
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• Global workspace theory. In the discussion of Premise 1 I showed how
an elementary robot could be seen as implementing some of the most
basic components of the global-workspace model of consciousness. Even
a rudimentary object in the paradigm of object-oriented programming
could be seen as marginally conscious on this account, insofar as it receives
inputs, processes them via lower-level functions, returns the values of those
functions (‘broadcasts them’) to other parts of its program as globally
accessible state variables for further use in action selection, and stores
the values as parameters in its ‘memory’ for later retrieval. One feature
of global-workspace theory missing in the simple object-oriented agent is
competition among multiple, parallel coalitions of ‘unconscious’ processing
units, but it’s not clear how essential it is to have many of these units
rather than just one, and in any case, some more advanced agents, like
the robot that focuses on the most salient of its input sensors, would have
this sort of competition.

• Fame in the brain. Dennett [1991] rejects what he calls the fallacy of the
‘Cartesian theater’ – the idea of a crucial finish line in the brain where
unconscious information all comes together and becomes seen by the con-
scious mind. Rather, Dennett [1991] explains, different information can
be processed at different places and different times, recorded in memory,
and accessed when needed. Consciousness is like fame [Dennett, 1996] or
power held by a political coalition [Dennett, 2001]. For something to be
conscious means it has wider reach and greater impact on other processes.
Of course, there’s not a binary distinction between being famous or ob-
scure, powerful or weak, so this model suggests that even simple processes
are slightly conscious / slightly famous. In particular, I take this view to
imply that the state, action, and reward information that an RL agent
distributes among its cognitive operations would be somewhat conscious.

• Integrated information theory. Tononi [2008] offers an account of con-
sciousness as ‘integrated information,’ i.e., informative signal-processing
units operating in a jointly dependent fashion. As Tononi [2008] notes,
even a single photodiode is minimally conscious on this account, if only to
a vanishing degree relative to large brains. Artificial RL agents would be
more conscious than the photodiode due to processing more information
in a more connected way.

• Higher-order theories. These views suggest that consciousness refers not
to cognition related to direct performance but rather to meta-level aware-

implementing the exact same algorithms as our brains would say they feel the same confusion
as to why they have phenomenal experience rather than being zombies, even though this
theory declares such machines to be unconscious. Of course, if we so choose, we can adopt a
phenomenal stance only toward biological brains, but this seems chauvinistic. If I developed a
personal relationship with a future robot – in which we had intimate philosophical discussions,
learned about each other’s dreams and fears, and engaged in activities together – I would care
about that robot, and I would regard it as having subjective experiences roughly as important
as my own, regardless of what specific physics was implementing it.
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ness and reporting of those lower-level thoughts [Lau and Rosenthal, 2011,
and references therein]. Depending on exactly how these theories are
cashed out, simple RL agents may display trivial forms of higher-order
cognition. For example, consider an agent that receives a reward, updates
its state-value estimates, and takes an action. It then records this history
of events in a log file, and upon request from the user, the agent loads
this file (‘thinks about its past first-order thoughts’) and prints the log
history to the screen (‘subjectively reports its experience’). Alternatively,
we could see an animation of an RL character moving on a screen as a
kind of higher-order thought about what’s happening to the character,
written not in words but in pictures. More advanced RL systems may
feature non-trivial metacognitive algorithms for assessing performance of
the first-order systems [Anderson et al., 2006].

Citing Broom [2006], Broom [2007] lists further criteria for consciousness in the
context of animal welfare:

A sentient being is one that has some ability to evaluate the actions
of others in relation to itself and third parties, to remember some of
its own actions and their consequences, to assess risk, to have some
feelings, and to have some degree of awareness.

We can see how each of these finds rudimentary implementation in at least some
present-day RL systems.

• Evaluating others’ actions. Multiagent RL is a well established field [Littman,
1994, Busoniu et al., 2008, Shoham and Leyton-Brown, 2009]. Even single-
agent RL systems can react to others’ behaviour as though the others were
part of the environment, and model-based systems could potentially esti-
mate transition probabilities for others’ behaviours in detail.

• Memory and imagination. Many RL tasks, like choosing the appropriate
navigation direction in a T-shaped maze based on a starting observation,
require remembering past information into the future to inform later de-
cisions. The Long Short-Term Memory recurrent neural network is one
approach that has been successfully employed with RL for this purpose
[Bakker, 2001]. Some RL architectures remember previous experiences
(‘episodic memories’) and use them for further offline learning via simu-
lated experiences generated from those observations [Sutton, 1990, Bakker
et al., 2003]. (Interestingly, the human brain also has a close connection
between episodic memory of the past and imagination of future scenarios
[Hassabis and Maguire, 2007], though I’m not sure whether it’s by the
same kind of mechanism.)

• Risk-assessment. A model-based RL system can evaluate the probability
of a transition to a negative state and use this to compute expected costs.
A model-free system implicitly assesses risk by directly estimating the
expected value of a state or state-action pair.
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• Emotion. The numerical reward values observed by an RL system, in the
context of other cognitive processes, could be seen as the crudest form of
emotion. Zimmermann [1986] famously defined the emotion of pain as ‘an
aversive sensory experience caused by actual or potential injury that elicits
protective motor and vegetative reactions, results in learned avoidance,
and may modify species-specific behaviour, including social behaviour.’
The avoidance and behaviour-modification parts of this definition follow
straightforwardly from an RL framework. Protective motor and vegetative
reactions could be understood in an RL context as an agent using input
stimuli to identify itself as being in a state s of injury, which then triggers
learned actions a appropriate for being in that state. Or the responses
could be just hard-wired reflexes.

• Awareness. Model-based RL systems develop probability distributions for
possible future outcomes (‘if I do X, I’ll likely enter state Y’). In a trivial
sense, these can be seen as representing knowledge and predictions about
oneself and the environment. As the models become more sophisticated
and better compress data about the world, it will become more and more
useful for these models to contain distinct network configurations that
stand for ‘myself.’ When these networks become activated, the agent
would be ‘self-aware’ [Schmidhuber, 2012].

Of course, not all RL systems have all of these cognitive features. This illustrates
once again how the degree of consciousness of agents comes in gradations.

Conscious subsystems?

One objection to this perspective of seeing rudimentary levels of consciousness
in simple systems is to point out that our own brains contain many subsystems
that are arguably at least as complex as present-day RL agents, and yet we
don’t perceive them as being conscious. My reply is that those subsystems
may indeed be conscious to themselves. As Sloman [2010] notes: ‘a part of a
whole animal or robot [may be] conscious of something that causes it to alter its
(internal) behaviour [...] while the whole animal is not introspectively conscious
of it.’ It’s true that those subsystems are not having significant influence on the
parts of your brain that win control of slow and deliberative actions, store long-
lasting memories, and verbalise your subjective experiences. But within their
local brain neighbourhoods, those subsystems are having some influence and
are exhibiting simplified versions of processes that we do call conscious when
they’re done by higher, more powerful parts of the brain.

Why don’t we directly perceive these subsystems as being conscious? For a
similar reason as why you don’t directly perceive me as being conscious. The
processes in my brain, like the processes in these low-level components that
aren’t globally broadcast, do not have enough influence on your verbal, memory,
and deliberative-action centres for you to say that you perceive them. But
rationally you can know that these processes are still doing things you consider
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morally relevant, and when we look at the systems at a lower level, they may
indeed be ‘conscious’ to themselves in a crude fashion.

Schwitzgebel [2012] observes that ‘There isn’t as radical a difference in kind
as people are inclined to think between our favorite level of organization and
higher and lower levels.’ His essay develops the idea of seeing the United States
as conscious, being constituted of many complex subsystems that act in ways
similar as the subsystems of an organism. If we think that only the highest
level of an integrated system is conscious, then if the United States were con-
scious, its citizens would not be, and yet we don’t consider individual citizens
morally unimportant. There is no single ‘finish line’ for consciousness; there are
just lower levels of organisation that combine into higher levels, that combine
into higher levels, each with its own degrees of complexity and nuance. Seeing
consciousness in these systems is akin to seeing the ‘leaf shape’ in a fractal fern.

One might still insist that only the famous and powerful parts of a brain
matter, and the lower-level systems are morally irrelevant unless they affect
the higher-level outputs. But we recoil from such views when they’re applied
higher up in our level of abstraction: We don’t think it’s right to ignore poor,
powerless people and only care about those with money or political influence.
Nor is it right to disregard the feelings of animals even though they can’t fight
for their own interests. So why would it be right to completely ignore the
components of our brains that failed to win control of our final verbal reports
and explicit memories? The fact that toddlers, most non-human animals, and
adult humans with severe verbal impairments can’t speak doesn’t nullify their
moral significance [Dombrowski, 1997]. And if we imagine that you were in-
jected with a sedative that blocked formation of memories, this would not then
make it acceptable to inflict pain on you. In fact, this last example may not
be purely hypothetical. The drug midazolam (also known as ‘versed,’ short for
‘versatile sedative’) is often used in procedures like endoscopy and colonoscopy.
von Delius et al. [2007] surveyed doctors in Germany who indicated that dur-
ing endoscopies using midazolam, patients would ‘moan aloud because of pain’
and sometimes scream. Most of the endoscopists reported ‘fierce defense move-
ments with midazolam or the need to hold the patient down on the examination
couch.’ And yet, because midazolam blocks memory formation, most patients
didn’t remember this: ‘the potent amnestic effect of midazolam conceals pain
actually suffered during the endoscopic procedure’ [von Delius et al., 2007].
While midazolam does prevent the hippocampus from forming memories, the
patient remains conscious, and dopaminergic reinforcement-learning continues
to function as normal [Frank et al., 2006].

One might agree that verbalisation and explicit memories per se are not the
morally relevant endpoint of consciousness but insist instead that the global
broadcast that normally precedes these things is. But if so, we have to explain
why global broadcasting is somehow fundamentally different from more local
broadcasting that the subsystems do in smaller regions. After all, the ‘global
broadcasting’ that happens in most of our brains usually stays there, rather
than being distributed all across planet Earth, yet it still matters to us.

Finally, as Schwitzgebel [2012]’s example of a conscious United States illus-
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trates, the boundaries of where an agent begins or ends aren’t necessarily sharp.
Is the United States a separate organism from Canada, even if they engage in
trade and cross-border migration? And what about Europe when people travel
for vacation? Similar kinds of delineation issues arise in the context of simple
RL agents: Which parts of the code are the ‘agent,’ and which are the ‘envi-
ronment’? It’s not always clear, especially if the program is written in a single
series of imperative statements without object-oriented organisation. Even for
the case of people, our minds are hooked up to our bodies, which are heavily
influenced by external objects in our surroundings. At what point does ‘our-
self’ end and ‘the external world’ begin? There’s not a hard separation; we are
all fundamentally part of the same big system. When we talk about different
entities, what we’re actually doing is carving out conceptual boundaries around
parts that are relatively connected and stable, in order to help us conceptualise
and describe what’s going on. We can do this ‘carving out’ process for RL
agents while also recognising that they are part of a bigger, unified program,
which may also matter in its own right.

Implication: Present-day artificial RL deserves a tiny bit of moral
consideration

Contemporary artificial RL agents do not implement most of the functionality
of human brains, or even, say, insect brains. But they do contain an important
component of what drives goal-directed, welfare-relevant cognition in animals,
namely RL, and they have traces of other morally salient characteristics, like
emotion (in the form of their computing the reward function based on inputs)
and consciousness (such as by broadcasting information updates). Programs
equipped with RL have enough of these traits to act successfully in their virtual
or physical worlds, showing that they are complete, if limited, agents.

If RL computations do matter at least a tiny bit, the next question is how
much they matter relative to other priorities. At the moment I think they
rank reasonably low on the list. For instance, fruit flies display rather complex
brains compared with many current RL agents. Fruit flies demonstrate RL
(e.g., Tempel et al. [1983]). They have 100,000 neurons, of which 200 contain
dopamine [Whitworth et al., 2006]. In addition, van Swinderen [2005] suggests
they may have ‘the remote roots of consciousness.’ Fruit flies are sufficiently
intelligent to engage in all the necessary behaviours required for reproduction,
repeatedly over millions of years.

In view of their greater cognitive functionality and degree of awareness, it’s
plausible that fruit flies matter, say, thousands of times more than present-
day RL algorithms per learning update. (I’m making up this number, but it
seems plausible given 100,000 fruit-fly neurons and the fact that an RL agent is
more functionally complex than just one or two neurons.) On the other hand,
computers can run thousands of learning updates for artificial agents in the
time it would take a fruit fly to have one update. So it may be that, say, the
RL algorithms running on a graduate student’s laptop are roughly comparable
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in importance to one insect. (Of course, this estimate is subject to substantial
revision as we learn more, or depending on your ethical viewpoint.) But in total
the world contains about ten billion billion insects5 and not nearly so many AI
graduate students, so the welfare of insects is a vastly greater moral concern
at this stage. But in the long run, as computing power grows and RL agents
become increasingly sophisticated, RL looks set to become a pressing ethical
consideration in its own right.

Unfortunately, even the welfare of insects and other invertebrates is not gen-
erally seen as a significant ethical issue, though the topic is receiving increasing
attention [Lockwood, 1987, Mather, 2001, Mason, 2011], and methods of pain
relief and euthanasia for invertebrates have been recommended [Cooper, 2011].

The analogy with laboratory-animal welfare is helpful, because RL research
can be approached using similar frameworks as animal research [Winsby, 2013].
Central principles for the use of experimental animals are the ‘Three Rs’ [Russell
and Burch, 1959]. Applied to RL, they would suggest that researchers

1. Replace the use of RL with other algorithms that less closely resemble an
agent undergoing emotionally valenced experiences

2. Reduce the number of RL agents used

3. Refine RL algorithms to be more humane, such as by

• using rewards instead of punishments

• not hooking up RL algorithms to higher-level cognitive and emotional
faculties

• running fewer biologically inspired RL algorithms (like TD actor-
critic value-function learning) and instead more abstract mathemat-
ical ones?

It’s not clear whether or how much to weigh different algorithms based on
their biological plausibility. A very parochial view is to say that we only care
about minds that are very similar to ours, including in their algorithmic con-
stitution. So, for instance, if humans don’t use policy-gradient learning, then
policy-gradient artificial RL would not be ethically significant. A more cos-
mopolitan view is to not focus so much on the specific algorithm, so long as it
gives rise to comparable behaviour and adaptability to the world. In the ex-
treme case, the cosmopolitan view might entail giving ethical consideration to
giant lookup tables [Block, 1981], though in practice such brains are unlikely to
be very common.

So it’s debatable how much mileage we can get by refining the type of RL
algorithm used. Perhaps the more urgent form of refinement than algorithm
selection is to replace punishment with rewards within a given algorithm. RL
systems vary in whether they use positive, negative, or both types of rewards:

5This figure is quoted in dozens of sources – e.g., Berenbaum [1995] – though I’m unable
to find the original calculation.
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• In certain RL problems, such as maze-navigation tasks discussed in Sutton
and Barto [1998], the rewards are only positive (if the agent reaches a goal)
or zero (for non-goal states).

• Sometimes a mix between positive and negative rewards6 is used. For
instance, McCallum [1993] put a simulated mouse in a maze, with a reward
of 1 for reaching the goal, -1 for hitting a wall, and -0.1 for any other action.

• In other situations, the rewards are always negative or zero. For instance,
in the cart-pole balancing system of Barto et al. [1990], the agent receives
reward of 0 until the pole falls over, at which point the reward is -1.
In Koppejan and Whiteson [2011]’s neuroevolutionary RL approach to
helicopter control, the RL agent is punished either a little bit, with the
negative sum of squared deviations of the helicopter’s positions from its
target positions, or a lot if the helicopter crashes.

Just as animal-welfare concerns may motivate incorporation of rewards rather
than punishments in training dogs [Hiby et al., 2004] and horses [Warren-Smith
and McGreevy, 2007, Innes and McBride, 2008], so too RL-agent welfare can
motivate more positive forms of training for artificial learners. Pearce [2007]
envisions a future in which agents are driven by ‘gradients of well-being’ (i.e.,
positive experiences that are more or less intense) rather than by the distinction
between pleasure versus pain. However, it’s not entirely clear where the moral
boundary lies between positive versus negative welfare for simple RL systems.
We might think that just the sign of the agent’s reward value r would distin-
guish the cases, but the sign alone may not be enough, as the following section
explains.

What’s the boundary between positive and negative welfare?

Consider an RL agent with a fixed life of T time steps. At each time t, the
agent receives a non-positive reward rt ≤ 0 as a function of the action at that
it takes, such as in the pole-balancing example. The agent chooses its action
sequence (at)t=1...T with the goal of maximising the sum of future rewards:

T∑
t=1

rt(at).

6As Barto et al. [1990] note, ‘negative reinforcement’ in behaviourist psychology refers
to reinforcing actions that remove an unpleasant stimulus, such as taking drugs to reduce
painful withdrawal symptoms [Flora, 2004]. What I refer to by ‘negative reward value’ in an
RL context could be used in learning either what behaviourists call ‘negative reinforcement’
(which increases inclination to take an action that removes an unpleasant stimulus) or ‘pos-
itive punishment’ (which decreases inclination to take an action that causes an unpleasant
stimulus). A parallel situation applies for ‘positive reinforcement’ and ‘negative punishment.’
I’ve avoided using the phrases ‘negative reinforcement’ and ‘positive reinforcement’ in this
article to reduce confusion, but when I speak of ‘negative rewards,’ all I mean are reward
values that are negative numbers (r < 0), and positive numbers for ‘positive rewards’ (r > 0),
without intending to suggest behaviourist connotations.
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Now suppose we rewrite the rewards by adding a huge positive constant c to
each of them, r′t = rt + c, big enough that all of the r′t are positive. The agent
now acts so as to optimise

T∑
t=1

r′t(at) =

T∑
t=1

(rt(at) + c) = Tc+

T∑
t=1

rt(at).

So the optimal action sequence is the same in either case, since additive con-
stants don’t matter to the agent’s behaviour.7 But if behaviour is identical, the
only thing that changed was the sign and numerical magnitude of the reward
numbers. Yet it seems absurd that the difference between happiness and suf-
fering would depend on whether the numbers used by the algorithm happened
to have negative signs in front. After all, in computer binary, negative numbers
have no minus sign but are just another sequence of 0s and 1s, and at the level
of computer hardware, they look different still. Moreover, if the agent was pre-
viously reacting aversively to harmful stimuli, it would continue to do so. As
Lenhart K. Schubert explains:8

If the shift in origin [to make negative rewards positive] causes no
behavioural change, then the robot (analogously, a person) would
still behave as if suffering, yelling for help, etc., when injured or
otherwise in trouble, so it seems that the pain would not have been
banished after all!

So then what distinguishes pleasure from pain? Why do I feel that pain has
a different emotional texture than pleasure, rather than both feelings lying on
a single scale of valuation?

One possibility is that the ‘hedonic zero point’ is determined by whether I
would prefer to have a given experience rather than nothing. The RL agent
that we considered in the above example had a fixed lifetime of T , but if it had
a variable lifetime, then its actions would depend substantially on whether the
rt values were positive or negative. If they were negative, the agent would seek
to end its life (‘commit suicide’) as soon as possible.9 If they were positive,

7The same would also be true if the agent optimised discounted future rewards over a fixed
finite or infinite lifetime.

Also, there could be rare cases where behaviour is not identical if the environment depends
on the numerical reward values. For example, suppose a robot prints out its last numerical
reward to an observing roboticist. If the roboticist sees a positive number, he smiles, and
the robot’s image sensors detect this as the ‘roboticist is happy’ state. If the roboticist sees a
negative number, he frowns, and the robot enters the ‘roboticist is unhappy’ state. Dependence
of the environment on the literal reward values is not typical, especially for simple systems
like the pole-balancing agent.

8This quotation comes from spring 2014 lecture notes (http://www.cs.rochester.edu/
users/faculty/schubert/191-291/lecture-notes/23, accessed March 2014) for a course
called ‘Machines and Consciousness.’

9Actually, this would depend on the initial value given to the death state for the agent.
Since death is an absorbing state after which no further learning happens, the agent can’t
empirically update its value for the death state. If the initial value was 0, the agent would
seek death if its life was full of negative rewards.
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it would seek to live as long as it could, because this would make the sum of
rewards larger.

This explanation may sound plausible due to its analogy to familiar concepts,
but it seems to place undue weight on whether an agent’s lifetime is fixed or
variable. Yet I would still feel pain and pleasure as being distinct even if I knew
exactly when I would die, and a simple RL agent has no concept of death to
begin with.

A more plausible account is that the difference relates to ‘avoiding’ versus
‘seeking.’ A negative experience is one that the agent tries to get out of and
do less of in the future. For instance, injury should be an inherently negative
experience, because if repairing injury was rewarding for an agent, the agent
would seek to injure itself so as to do repairs more often. If we tried to reward
avoidance of injury, the agent would seek dangerous situations so that it could
enjoy returning to safety.10 Injury needs to be something the agent wants to
get as far away from as possible. So, for example, even if vomiting due to food
poisoning is the best response you can take given your current situation, the
experience should be negative in order to dissuade you from eating spoiled foods
again.

Still, the distinction between avoiding and seeking isn’t always clear. We
experience pleasure due to seeking and consuming food but also pain that mo-
tivates us to avoid hunger. Seeking one thing is often equivalent to avoiding
another. Likewise with the pole-balancing agent: Is it seeking a balanced pole,
or avoiding a pole that falls over?

In animal brains, we may be able to tease out some of the distinction be-
tween seeking and avoiding at a physiological level. Daw et al. [2002] review
evidence that humans have two separate motivational systems, one appetitive
and one aversive. While dopamine is associated with approach, serotonin is
associated with inhibition (among many other things). In AI, RL uses a single
scalar reward-prediction error δ, which may be positive or negative with any
magnitude, but in the brain, firing rates can only be positive, so presumably
a different signal (possibly serotonin) is needed to encode significantly negative
errors [Daw et al., 2002]. It’s true that dopamine has a baseline firing rate, and
when expected rewards are omitted, dopamine firing drops below baseline, but
the magnitude of this effect doesn’t seem sufficient on its own. Based on these
lines of reasoning, Daw et al. [2002] develop a computational model in which
serotonin acts as the opponent to dopamine:

total prediction error = dopamine − serotonin.

The model is consistent with findings that serotonin is associated with harm
avoidance [Cloninger, 1986, Hansenne and Ansseau, 1999]. Daw et al. [2002]

10This example comes from Lenhart K. Schubert’s spring 2014 lecture notes (http://www.
cs.rochester.edu/users/faculty/schubert/191-291/lecture-notes/23, accessed March
2014) for a course called ‘Machines and Consciousness.’ These thought experiments are not
purely academic. We can see an example of maladaptive behaviour resulting from an as-
sociation of pleasure with injury when people become addicted to the endorphin release of
self-harm.
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also explain how serotonin can help implement an RL system designed to opti-
mise long-run undiscounted average reward [Mahadevan, 1996], and their model
accounts for the influential opponent-process theory of motivation in psychology
[Solomon and Corbit, 1974]. Because serotonin in this model is hypothesised to
encode a running-average reward as opposed to current reward, and dopamine
is hypothesised to encode a running-average punishment as opposed to current
punishment, Daw et al. [2002]’s account also explains why dopamine is observed
to rise in response to aversive events.

A final explanation for why pain feels different from pleasure may be that the
emotional texture of experiences varies based on the pattern of other neural pro-
cesses that go on when the experience is triggered. Even among negative experi-
ences, we can distinguish among physical pain, depression, fear, embarrassment,
guilt, and so on. Each has its own distinct character based on the orchestra of
other cognitive instruments that are playing when it happens. Aldridge and
Berridge [2010] suggest a similar idea for the case of positive experiences:

Much of human pleasure has cognitive qualities that infuse uniquely
human properties, and it is likely that abstract or higher pleasures
depend on cortical brain areas for those qualities. [...T]he particular
pattern of coactivated cortical circuits would resolve the high level
cognitive features of a pleasantness gloss on sensations or actions.

Where does all of this leave our pole-balancing agent? Does it suffer con-
stantly, or is it enjoying its efforts? Likewise, is an RL agent that aims to
accumulate positive rewards having fun, or is it suffering when its reward is
suboptimal? Of course, as with sentience itself, our evaluations of the emo-
tional valences of these cases are up to us to decide, but our uncertainty in how
to make this choice is a reason to exercise caution before we run vast numbers of
RL computations – perhaps even those that only use positive rewards (r > 0).

While hedonic setpoints vary among humans, with some people enduring
chronic depression and others enjoying frequent satisfaction, this fact presents
somewhat less of a puzzle than we have with the pole-balancing agent, because
depressed humans behave differently than happy ones, whereas the pole bal-
ancer behaves exactly the same with a uniform shift in its reward values. For
more complex, human-like agents, if they behave similarly to depressed people,
perhaps this is an indication of net suffering, and the opposite if they behave
similarly to happy people. But it’s dubious to extend this heuristic much be-
yond the realm of agents with close resemblance to mammals. Instead, we need
to develop more general principles.

Commercial applications of RL

While many state-of-the-art RL systems currently dwell in academia, in the long
run I expect most RL computations to happen in the industrial and consumer
domains, once technologies using RL become commercialised.

RL has been proposed for many purposes, including
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• playing backgammon [Tesauro, 1994] and Othello [van Eck and van Wezel,
2008]

• elevator scheduling [Crites and Barto, 1996]

• job scheduling [Aydin and Öztemel, 2000]

• task scheduling in petroleum production [Aissani and Beldjilali, 2009]

• web spidering [Rennie and McCallum, 1999]

• stock trading [Lee et al., 2007]

• optimising drug delivery [Gaweda et al., 2006, Malof and Gaweda, 2011]

• military simulations [Sidhu et al., 2006, Collins et al., 2013, Papadopoulos
et al., 2013].

One of the fields most closely tied with RL is robotics, because it deals with
autonomous agents that need to act in the world. In fact, one review article
suggested: ‘The relationship between [robotics and RL] has sufficient promise
to be likened to that between physics and mathematics’ [Kober et al., 2013].

Video games may be another hotbed of RL in the future, since RL offers
the promise of creating more realistic non-player characters (NPCs). Currently
many ‘game AIs’ use hard-coded rules, but these require effort to build, and
machine-learning techniques like RL offer the prospect of automating and refin-
ing NPC behaviour [Patel et al., 2011]. The topic has attracted much academic
interest [Björnsson et al., 2008, Amato and Shani, 2010]. One popular example
of RL for video games is learning to play Super Mario [Karakovskiy and To-
gelius, 2012]. RL has also been applied to the widely studied Open Racing Car
Simulator [Loiacono et al., 2010].

RL in video games presents one of the clearest cases of ethical concern,
because the games are visually compelling and many times violent, making it
relatively easier to evoke our emotional sympathies. RL has been suggested
for first-person shooter games, and a natural way to train enemy NPCs is to
inflict punishment on them when they’re killed. For instance, McPartland and
Gallagher [2011] report their design: ‘A large penalty (-1.0) was given when
the bot was killed, and a small penalty (-0.000002) was given when the bot
was wounded.’ As RL is increasingly applied in video games, and as the AI
algorithms involved become increasingly lifelike, the ethical questionableness of
punishing NPCs will grow.

We can imagine some mitigation proposals, along the lines of the Three Rs
discussed previously, that would allow gamers to enjoy greater NPC intelligence
without quite so much ethical concern. For instance, if the NPCs can be trained
extensively offline, so that in the video game they only execute their previously
learned rules rather than continuing to learn on the fly during game play, this
would reduce the amount of RL required. In games such as Creatures [Grand
and Cliff, 1998], where players can choose how much to punish their AI pets,
game designers could build in limitations on the amount of suffering the AIs
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could endure before they faint, or die, or otherwise terminate the negative input
processes. Perhaps the video-game industry could develop protocols for humane
game design, pushed along by government regulation or voluntary standards.
That said, this might be a challenging proposition, considering that many people
already think that exposure to video-game violence is wrong, while the gaming
industry has done little in response. We might also worry whether regulations
would drive the inhumane games underground, as being what the ‘cool, hard-
core’ gamers play.

Whitby [2008] cites examples in which humans have physically abused robots
with which they interacted. This may be troubling, but from the perspective of
machine welfare, our moral evaluation depends (ignoring instrumental consid-
erations) on whether the robots were wired to respond aversively to the damage
they underwent. Moreover, I think the vast majority of potential suffering that
robots and other RL agents will experience in the future will not be due to abuse
by angry human owners but rather will be built into their utility functions and
will result from ‘natural’ interactions with the environment. While perhaps less
emotionally salient to observers, this systemic suffering will be far more com-
mon, and insofar as it will be at least somewhat preventable, it deserves ethical
priority.

It may be easiest to engender concern for RL when it’s hooked up to robots
and video-game characters because these agents have bodies, perhaps including
faces that can display their current ‘emotional states.’ In fact, interacting with
another agent, and seeing how it behaves, can incline us toward caring about it
whether it has a mind or not. For instance, children become attached to their
dolls, and we may sympathise with cartoon characters on television. In contrast,
it’s harder to care about a batch of RL computations with no visualization in-
terface being performed on some computing cluster, even if their algorithms are
morally relevant. It’s even harder to imagine soliciting donations to an advocacy
organisation – say, People for the Ethical Treatment of Reinforcement Learners
– by pointing to a faceless, voiceless algorithm. Thus, our moral sympathies may
sometimes misfire, both with false positives and false negatives. Hopefully legal
frameworks, social norms, and philosophical sophistication will help correct for
these biases.

Some feel that placing special emphasis on those we’re close to is not a bias
but a feature of their moral frameworks. For instance, Coeckelbergh [2010]
proposes a social-relational paradigm for robot ethics based around ‘relations
between various entities, human and non-human, which are inter-dependent
and adapt to one another.’ This brings robots into the ethical picture ‘provided
that they participate in the social life.’ Sadly, such an approach gives less weight
to vastly greater numbers of RL agents that may suffer invisibly in back-end
industrial computation centres.

The applications of RL in gaming, robotics, and industry are manifold, and
they seem likely to expand in the coming decades. That said, these uses of RL
are relatively minor compared with what we might anticipate in the far future,
if humanity or non-human AIs expand into the galaxy, harnessing the energy of
stars to create prodigious amounts of computing power, and requiring massive
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numbers of robots and other, possibly RL-based agents as workers. The ethical
risks in scenarios like these are, to borrow a double entendre from Bostrom
[2003], ‘astronomical.’

Do non-RL agents matter?

If a primary evolutionary purpose of pleasure and pain is to serve as the re-
ward/punishment values in an RL system, do organisms lacking RL not expe-
rience pleasure or pain? Perhaps this is one reason why, when scientists ask
questions like ‘Do bugs feel pain?’, they look for abilities like RL beyond mere
reflex behaviour [EFSA, 2005].

Are there other features of an organism that matter ethically besides RL?
What if it’s an apparently goal-directed agent exhibiting complex but not adap-
tive behaviours, such as NPCs in most modern video games that run using fixed
if-then rules (analogous to stimulus-response reflexes in animals) and non-RL
algorithmic methods like pathfinding algorithms?

Many industrial-control systems, including simple thermostats, likewise re-
spond to environmental conditions by following pre-programmed rules rather
than learning the rules. An RL agent could become a thermostat, learning to
turn on the heat when it entered the ‘cold’ state and turn on the cooling when
it entered the ‘hot’ state. Once trained, the RL agent might act just like the
thermostat. But the thermostat didn’t have the training phase.

It seems plausible to care about goal-directed agents even if they didn’t
have a training phase. After all, they still appear to have what we would call
preferences; things can still be better or worse for them. When an AI NPC in a
first-person shooter is killed, it still fails to accomplish what it was striving for,
even if that striving was only being executed by pre-programmed rules.

Torrance [2000] suggests that even if AIs aren’t sentient, one might still value
them ethically for attributes like autonomy, intelligence, and cognitive sophisti-
cation. My discussion here is similar, except that on my view of sentience, those
attributes might indeed be rightly considered part of what makes an agent sen-
tient. But fundamentally it doesn’t matter whether we call these criteria part
of sentience or part of moral valuation beyond sentience, because the intuitions
and conclusions seem to be similar.

I think sufficiently complex rule-based agents probably do have ethical im-
portance, even if they don’t perform RL. To pump this intuition, imagine if you
took an elderly person and disrupted her brain’s RL modules. She wouldn’t
update her action-value estimates, but she would continue to operate with her
existing, well trained estimates. Presumably this person would still seem fairly
normal, someone whom we could be friends with and who could tell us about her
experiences, at least for a while until the inability to update action tendencies
started to cause problems. I would still care a lot about such a person. And in
fact, this example may not be purely imaginary. Parkinson’s disease is marked
by loss of dopamine [Kish et al., 1988]. This impairs performance on prediction
and reinforcement-learning tasks [Knowlton et al., 1996, Frank et al., 2004].
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It may be that our experience architecture is built at least partly for the
purpose of RL, but this doesn’t mean that if you eliminate RL, you elimi-
nate experiences. The reward/punishment signals can keep coming, even if the
dopamine or other neurochemicals that encode prediction errors stop working.
But if we can care about hypothetical humans whose RL abilities have been
removed, why not also care about video-game NPCs that act in a goal-directed
fashion without any RL training? If it helps to arouse our sympathies, we could
imagine training them with RL and then turning the RL off.

Or maybe the latent architecture is also quite relevant. The hypothetical
person whose RL capacity was shut down presumably would still have neural
systems for input valuation – for turning signals from the environment and other
brain regions into broadcasts that ‘This feels good’ or ‘This feels bad.’ A video-
game AI using fixed if-then rules does not have an overt valuation function.
That said, some planning agents do explicitly optimise a sum of future rewards
even though they don’t update actions using reinforcement learning (e.g., [Liu
and Schubert, 2010]). Indeed, many kinds of optimisation processes can be seen
as choosing actions to increase rewards relative to some reward function.

Note that if we extend ethical significance to goal-directed agents even if they
don’t use RL, our moral circle of concern expands very wide. Query optimisers,
path planners, machine-translation systems, and many other routine computer
programs make choices with an eye to optimising a goal function. We can even
see this kind of process throughout physics, such as when a protein folds so as to
minimise energy [Wales, 2003] or when particles choose a movement trajectory
so as to minimise ‘action’ [Gray, 2009].

Still, even if our ethical valuation assigns nonzero moral weight to these
things, the weight can be exceedingly minuscule, so maybe the practical impli-
cations are not as drastic as they might seem. In general, deciding how much
to value different features of the universe is a challenging enterprise. It requires
both the heart, to assess what kinds of entities we feel compassion towards, and
the head, to make our intuitions consistent and identify sources of suffering that
we might not ordinarily have noticed. This paper has only begun to scratch the
surface.

Robustness to other views on consciousness

Caring a little bit about RL algorithms seems a natural extension of a graded
view of sentience. If subjective experience is a stance we adopt toward physical
processes, then processes that have at least minimal degrees of morally relevant
characteristics matter a small amount.

But my graded, ‘phenomenal stance’ approach to consciousness is not uni-
versally shared. For example, Torrance [2000] explicitly rejects as absurd the
thesis I advanced in Premise 1:

How would we be able to tell if an [AI] were genuinely conscious,
rather than just behaving outwardly as conscious? One answer links
the matter back to ethical judgment: to claim that x is genuinely
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conscious may be thought to be definitionally dependent upon the
adoption of the appropriate moral attitude towards x. But surely
my own consciousness is a matter of objective fact, known to me.
Your failure to ascribe consciousness to me is not, therefore, a mere
matter of your making a certain moral decision; it is factually false.11

How does my argument fare for those who feel that whether an agent is
conscious is binary? Different theories of consciousness will give different an-
swers, but many of them should at least admit the possibility that RL programs
might be conscious. Perhaps the likelihood is low, but it should be nonzero. In
that case, RL programs would still matter ethically at least a tiny bit in ex-
pected value. The conclusions would then be similar as what I argued for, with
‘probability of sentience’ playing the role that ‘degree of sentience’ had in my
discussion.

Of course, if sentience were a factual, binary property rather than a subjec-
tive, fuzzy category, then in the long run, once people understood consciousness
well enough, they could potentially conclude with high certainty that RL pro-
grams didn’t suffer (or did, as the case may be). At that point the practical
implications might diverge. Until then, it seems that many views warrant at
least thinking twice about the ethical implications of large-scale RL, even if it
doesn’t yet constitute one of the world’s most pressing moral problems.
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ronal replicator hypothesis. Neural Computation, 22(11):2809–2857, 2010.
doi:10.1162/NECO a 00031.
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