
Theory and Decision
https://doi.org/10.1007/s11238-018-9679-3

Robust program equilibrium

Caspar Oesterheld1,2

© The Author(s) 2018

Abstract
One approach to achieving cooperation in the one-shot prisoner’s dilemma is Ten-
nenholtz’s (Games Econ Behav 49(2):363–373, 2004) program equilibrium, in which
the players of a game submit programs instead of strategies. These programs are then
allowed to read each other’s source code to decide which action to take. As shown
by Tennenholtz, cooperation is played in an equilibrium of this alternative game. In
particular, he proposes that the two players submit the same version of the following
program: cooperate if the opponent is an exact copy of this program and defect oth-
erwise. Neither of the two players can benefit from submitting a different program.
Unfortunately, this equilibrium is fragile and unlikely to be realized in practice. We
thus propose a new, simple program to achieve more robust cooperative program equi-
libria: cooperate with some small probability ε and otherwise act as the opponent acts
against this program. I argue that this program is similar to the tit for tat strategy for
the iterated prisoner’s dilemma. Both “start” by cooperating and copy their opponent’s
behavior from “the last round”. We then generalize this approach of turning strategies
for the repeated version of a game into programs for the one-shot version of a game
to other two-player games. We prove that the resulting programs inherit properties of
the underlying strategy. This enables them to robustly and effectively elicit the same
responses as the underlying strategy for the repeated game.

Keywords Algorithmic game theory · Program equilibrium · Nash equilibrium ·
Repeated games

Contents

1 Introduction .
2 Preliminaries .

2.1 Strategic-form games .

B Caspar Oesterheld
caspar.oesterheld@foundational-research.org; caspar.oesterheld@duke.edu

1 Foundational Research Institute, Berlin, Germany

2 Present Address: Duke University, Durham, North Carolina, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11238-018-9679-3&domain=pdf
http://orcid.org/0000-0003-4222-7855

C. Oesterheld

2.2 Program equilibrium .
2.3 Repeated games .

3 Robust program equilibrium in the prisoner’s dilemma .
4 From iterated game strategies to robust program equilibria .

4.1 Halting behavior .
4.2 Relationship to the underlying iterated game strategy .
4.3 Exploitability .

5 Conclusion .
References .

1 Introduction

Much has been written about rationalizing non-Nash equilibrium play in strategic-
form games. Most prominently, game theorists have discussed how cooperation may
be achieved in the prisoner’s dilemma, wheremutual cooperation is not aNash equilib-
rium but Pareto-superior to mutual defection. One of the most successful approaches
is the repetition of a game, and in particular the iterated prisoner’s dilemma (Axelrod
2006).

Another approach is to introduce commitment mechanisms of some sort. In this
paper, we will discuss one particular commitment mechanism: Tennenholtz’s (2004)
program equilibrium formalism (Sect. 2.2). Here, the idea is that in place of strategies,
players submit programswhich compute strategies and are given access to each other’s
source code. The programs can then encode credible commitments, such as some
version of “if you cooperate, I will cooperate”.

As desired, Tennenholtz (2004, Sect. 3, Theorem 1) shows that mutual cooperation
is played in a program equilibrium of the prisoner’s dilemma. However, Tennenholtz’
equilibrium is very fragile. Essentially, it consists of two copies of a program that
cooperates if it faces an exact copy of itself (cf. McAfee 1984; Howard 1988). Even
small deviations from that programbreak the equilibrium. Thus, achieving cooperation
in this way is only realistic if the players can communicate beforehand and settle on
a particular outcome.

Another persuasive critique of this trivial equilibrium is that the model of two
players submitting programs is only a metaphor, anyway. In real life, the programs
may instead be the result of an evolutionary process (Binmore 1988 pp. 14f.) and
Tennenholtz’ equilibrium is a hard to obtain by such a process. Alternatively, if we
view our theory as normative rather than descriptive, we may view the programs
themselves as the target audience of our recommendations. This also means that these
agentswill alreadyhave some formof source code—e.g., one that derives and considers
the program equilibria of the game—and it is out of their realm of power to change
that source code to match some common standard. However, they may still decide on
some procedure for thinking about this particular problem in such a way that enables
cooperation with other rationally pre-programmed agents.

Noting the fragility of Tennenholtz’ proposed equilibrium, it has been proposed to
achieve a more robust program equilibrium by letting the programs reason about each
other (van der Hoek et al. 2013; Barasz et al. 2014; Critch 2016). For example, Barasz
et al. (2014, Sect. 3) propose a program FairBot—variations of which we will see in

123

Robust program equilibrium

this paper—that cooperates if Peano arithmetic can prove that the opponent cooper-
ates against FairBot. FairBot cooperates (via Löb’s theorem) more robustly against
different versions of itself. These proposals are very elegant and certainly deserve
further attention. However, their benefits come at the cost of being computationally
expensive.

In this paper, I thus derive a class of program equilibria that I will argue to be more
practical. In the case of the prisoner’s dilemma, I propose a program that cooperates
with a small probability and otherwise acts as the opponent acts against itself (see
Algorithm1). Doingwhat the opponent does—à la FairBot—incentivizes cooperation.
Cooperating with a small probability allows us to avoid infinite loops that would arise
if we merely predicted and copied our opponent’s action (see Algorithm 2). This
approach to a robust cooperation program equilibrium in the prisoner’s dilemma is
described in Sect. 3.

We then go on to generalize the construction exemplified in the prisoner’s dilemma
(see Sect. 4). In particular, we show how strategies for the repeated version of a game
can be used to construct good programs for the one-shot version of that game. We
show that many of the properties of the underlying strategy of the repeated game carry
over to the program for the stage game. We can thus construct “good” programs and
program equilibria from “good” strategies and Nash equilibria.

2 Preliminaries

2.1 Strategic-form games

For reference, we begin by introducing some basic terminology and formalism for
strategic-form games. For an introduction, see, e.g., Osborne (2004). For reasons that
will become apparent later on, we limit our treatment to two-player games.

A two-player strategic game G = (A1, A2, u1, u2) consists of two countable sets of
moves Ai and for both players i ∈ {1, 2} a bounded utility function ui : A1× A2 → R.
A (mixed) strategy for player i is a probability distribution πi over Ai .

Given a strategy profile (π1, π2) the probability of an outcome (a1, a2) ∈ A1 × A2
is

P(a1, a2 | π1, π2) := π1(a1) · π2(a2). (1)

The expected value for player i given that strategy profile is

E [ui | π1, π2] :=
∑

(a1,a2)∈A1×A2

P(a1, a2 | π1, π2) · ui (a1, a2).

Note that because the utility function is bounded, the sum converges absolutely, such
that the order of the action pairs does not affect the sum’s value.

123

C. Oesterheld

2.2 Program equilibrium

We now introduce the concept of program equilibrium, first proposed by Tennenholtz
(2004). The main idea is to replace strategies with computer programs that are given
access to each other’s source code.1 The programs then give rise to strategies.

For any game G, we first need to define the set of program profiles PROG(G)

consisting of pairs of programs. The i th entry of an element of PROG(G) must be a
program source code pi that, when interpreted by a function apply, probabilistically
map program profiles2 onto Ai .

We require that for any program profile (p1, p2) ∈ PROG(G), both programs halt.
Otherwise, the profile would not give rise to a well-defined strategy. Whether pi halts
depends on the program p−i , it plays against, where (in accordance with convention
in game theory) − : {1, 2} → {1, 2} : 1 �→ 2, 2 �→ 1 and we write −i instead
of −(i). For example, if pi runs apply(p−i , (pi , p−i)), i.e., simulates the opponent,
then that is fine as long as p−i does not also run apply(pi , (pi , p−i)), which would
yield an infinite loop. To avoid this mutual dependence, we will generally require that
PROG(G) = PROG1(G) × PROG2(G), where PROGi (G) consists of programs for
player i .Methods of doing thiswhilemaintaining expressive power include hierarchies
of players—e.g., higher indexed players are allowed to simulate lower indexed ones
but not vice versa—hierarchies of programs—programs can only call their opponents
with simpler programs as input—requiring programs to have a “plan B” if termination
can otherwise not be guaranteed, or allowing each player to only start strictly less than
one simulation in expectation. These methods may also be combined. In this paper,
we do not assume any particular definition of PROG(G). However, we assume that
they can perform arbitrary computations as long as these computations are guaranteed
to halt regardless of the output of the parts of the code that do depend on the opponent
program. We also require that PROG(G) is compatible with our constructions. We
will show our constructions to be so benign in terms of infinite loops that this is not
too strong of an assumption.

Given a programprofile (p1, p2), we receive a strategy profile (apply(p1, (p1, p2)),
apply(p2, (p1, p2))). For any outcome (a1, a2) of G, we define

P(a1, a2 | p1, p2) := P(a1, a2 | apply(p1, (p1, p2)), apply(p2, (p1, p2)))
(2)

and for every player i ∈ {1, 2}, we define

E [ui | p1, p2] :=
∑

(a1,a2)∈A1×A2

P(a1, a2 | p1, p2) · ui (a1, a2). (3)

1 The equilibrium in its rudimentary form had already been proposed by McAfee (1984) and Howard
(1988). At least the idea of viewing players as programs with access to each other’s source code has also
been discussed by, e.g., Binmore (1987, Sect. 5; 1988) and Anderlini (1990).
2 For keeping our notation simple, we will assume that our programs receive their own source code as input
in addition to their opponent’s. If PROGi (G) is sufficiently powerful, then by Kleene’s second recursion
theorem, programs could also refer to their own source code without receiving it as an input (Cutland 1980,
ch. 11).

123

Robust program equilibrium

For player i , we define the (set-valued) best response function as

Bi (p−i) = argmaxpi∈PROGi (G) E
[
ui | pi , p−i

]
.

A program profile (p1, p2) is a (weak) program equilibrium of G if for i ∈ {1, 2} it
is pi ∈ Bi (p−i).

2.3 Repeated games

Our construction will involve strategies for the repeated version of a two-player game.
Thus, for any game G, we define Gε to be the repetition of G with a probability of
ε ∈ (0, 1] of ending after each round. Both players of Gε will be informed only of the
last move of their opponent. This differs from themore typical assumption that players
have access to the entire history of past moves. We will later see why this deviation is
necessary. A strategy πi for player i non-deterministically maps opponent moves or
the information of the lack thereof onto a move

πi : {0} ∪ A−i � Ai .

Thus, for a ∈ Ai , b ∈ A−i , πi (b, a) := πi (b)(a) denotes the probability of choosing
a given that the opponent played b in the previous round and πi (0, a) := πi (0)(a)

denotes the probability of choosing a in the first round.We call a strategy πi stationary
if for all a ∈ Ai , πi (b, a) is constant with respect to b ∈ {0} ∪ A−i . If πi is stationary,
we write πi (a) := πi (b, a). The probability that the game follows a complete history
of moves h = a0b0a1b1 · · · anbn and then ends is

P(h | (π1, π2)) := π1(0, a0)π2(0, b0)ε(1 − ε)n
n∏

i=1

π1(bi−1, ai)π2(ai−1, bi). (4)

Note that the moves in the history always come in pairs aibi which are chosen
“simultaneously” in response to bi−1 and ai−1, respectively. The expected value for
player i given the strategy profile (π1, π2) is

E [ui | π1, π2] :=
∑

h∈(A1·A2)+
P(h | π1, π2) · ui (h), (5)

where (A1 · A2)
+ is the set of all histories and

ui (a0b0a1b1 · · · anbn) :=
n∑

i=0

ui (ai , bi). (6)

The lax unordered summation in Eq. 5 is, again, unproblematic because of the absolute
convergence of the series, which is a direct consequence of the proof of Lemma 1.
Note how the organization of the history into pairs of moves allows us to apply the
utility function of the stage game in Eq. 6.

123

C. Oesterheld

For player i , we define the set-valued best response function as

Bi (π−i) = argmaxπi :{0}∪A−i�Ai
E

[
ui | πi , π−i

]
.

Analogously, Bc
i (π−i) is the set of responses toπ−i that are best among the computable

ones, Bs
i (π−i) the set of responses to π−i that are best among the stationary ones, and

Bs,c
i (π−i) the set of responses to π−i that are best among stationary computable

strategies. A strategy profile (π1, π2) is a (weak) Nash equilibrium of Gε if for i ∈
{1, 2} it is πi ∈ Bi (π−i).

We now prove a few lemmas that we will need later on. First, we have sugges-
tively called the values P(h) probabilities, but we have not shown them to satisfy,
say, Kolmogorov’s axioms. Additivity is not an issue, because we have only defined
the probability for atomic events and non-negativity is obvious from the definition.
However, we will also need the fact that the numbers we have called probabilities
indeed sum to 1, which requires a few lines to prove.

Lemma 1 Let Gε be a repeated game and π1, π2 be strategies for that game. Then

∑

h∈(A1·A2)+
P(h | π1, π2) = 1.

Proof

∑

h

P(h | π1, π2) =
Eq. 4

∑

a0b0···anbn∈(A1·A2)+
π1(0, a0)π2(0, b0)ε(1 − ε)n

·
n∏

i=1

π1(bi−1, ai)π2(ai−1, bi)

=
absolute

convergence

ε

∞∑

n=0

(1 − ε)n
∑

a0b0···anbn∈(A1A2)
n+1

π1(0, a0)π2(0, b0)
n∏

i=1

π1(bi−1, ai)π2(ai−1, bi)

= ε

∞∑

n=0

(1 − ε)n
∑

a0b0∈A1A2

π1(0, a0)π2(0, b0)
∑

a1b1∈A1A2

π1(b0, a1)π2(a0, b1) . . .

·
∑

anbn∈A1A2

π1(bn−1, an)π2(an−1, bn)

= ε

∞∑

n=0

(1 − ε)n

=
sum of geo-
metric series

1

For seeing why the second-to-last equation is true, notice that the inner-most sum is 1.
Thus, the next sum is 1 as well, and so on. Since the ordering in the right-hand side of
the first line is lax, and because only the second line is known to converge absolutely,

123

Robust program equilibrium

the re-ordering is best understood from right to left. The last step uses the well-known
formula

∑∞
k=0 x

k = 1/(1 − x) for the geometric series. ��
For any game Gε , k ∈ N+, a ∈ A1, b ∈ A2 and strategies π1 and π2 for Gε , we

define

Pk,Gε (a, b | π1, π2) := (1 − ε)k
∑

a0b0···ak−1bk−1∈(A1A2)
k

π1(bk−1, a)π2(ak−1, b)π1(0, a0)π2(0, b0)

·
k−1∏

j=1

π1(b j−1, a j)π2(a j−1, b j). (7)

For k = 0, we define

P0,Gε (a, b | π1, π2) := π1(0, a) · π2(0, b).

Intuitively speaking, Pk,Gε (a, b | π1, π2) is the probability of reaching at least round
k and that (a, b) is played in that round. With this

∑

ab∈A1A2

Pk,Gε (a, b | π1, π2)ui (a, b)

should be the expected utility from the kth round (where not getting to the kth round
counts as 0). This suggests a new way of calculating expected utilities on a more
round-by-round basis.

Lemma 2 Let Gε be a game, and let π1, π2 be strategies for that game. Then

E [ui | π1, π2] =
∞∑

k=0

∑

ab∈A1A2

Pk,Gε (a, b | π1, π2)ui (a, b).

Proof

EGε [ui | π1, π2] =
∑

h∈(A1A2)+
P(h | π1, π2)ui (h)

=
Eqs. 4, 6

∑

a0b0···anbn∈(A1A2)+
π1(0, a0)π2(0, b0)ε(1 − ε)n

⎛

⎝
n∏

j=1

π1(b j−1, a j)π2(a j−1, b j)

⎞

⎠

·
n∑

k=0

ui (ak , bk) =
∞∑

k=0

∑

a0b0···anbn∈(A1A2)≥k+1

π1(0, a0)π2(0, b0)ε(1 − ε)n

·
⎛

⎝
n∏

j=1

π1(b j−1, a j)π2(a j−1, b j)

⎞

⎠ ui (ak , bk)

=
∞∑

k=0

∑

a0b0···akbk∈(A1A2)k+1

∑

ak+1bk+1···anbn∈(A1A2)∗
π1(0, a0)π2(0, b0)ε(1 − ε)nui (ak , bk)

123

C. Oesterheld

·
⎛

⎝
k∏

j=1

π1(b j−1, a j)π2(a j−1, b j)

⎞

⎠

⎛

⎝
n∏

j=k+1

π1(b j−1, a j)π2(a j−1, b j)

⎞

⎠

=
∞∑

k=0

∑

a0b0···akbk∈(A1A2)k+1

π1(0, a0)π2(0, b0)ε(1 − ε)kui (ak , bk)

·
⎛

⎝
k∏

j=1

π1(b j−1, a j)π2(a j−1, b j)

⎞

⎠

·
∑

ak+1bk+1···anbn∈(A1A2)∗
ε(1 − ε)n−k

⎛

⎝
n∏

j=k+1

π1(b j−1, a j)π2(a j−1, b j)

⎞

⎠

=
lemma 1

∞∑

k=0

∑

a0b0···akbk∈(A1A2)k+1

π1(0, a0)π2(0, b0)ε(1 − ε)kui (ak , bk)

·
⎛

⎝
k∏

j=1

π1(b j−1, a j)π2(a j−1, b j)

⎞

⎠

=
Eq. 7

∞∑

k=0

∑

akbk∈A1A2

Pk(ak , bk | π1, π2)ui (ak , bk)

��

Tofind the probability of player i choosing a in round k, we usually have to calculate
the probabilities of all actions in all previous rounds. After all, player i reacts to player
−i’s previous move, who in turn reacts to player i’s move in round k − 2, and so on.
This is what makes Eq. 7 so long. However, imagine that player −i uses a stationary
strategy. This, of course, means that player −i’s probability distribution over moves
in round k (assuming the game indeed reaches round k) can be computed directly as
π−i (b). Player i’s distribution over moves in round k is almost as simple to calculate,
because it only depends on player −i’s distribution over moves in round k − 1, which
can also be calculated directly. We hence get the following lemma.

Lemma 3 Let Gε be a game, let πi be a any strategy for Gε and let π−i be a stationary
strategy for Gε . Then, for all k ∈ N+, it is

Pk,Gε (a, b | πi , π−i) = (1 − ε)k
∑

b′∈A−i

π−i (b
′)π−i (b)πi (b

′, a).

Proof We conduct our proof by induction over k. For k = 1, it is

P1(a, b | πi , π−i) =
Eq. 7

(1 − ε)
∑

a0b0

πi (b0, a)π−i (a0, b)πi (0, a0)π−i (0, b0)

123

Robust program equilibrium

Table 1 Payoff matrix for the
prisoner’s dilemma

Player 1 Player 2

Cooperate Defect

Cooperate 3, 3 1, 4

Defect 4, 1 2, 2

= (1 − ε)
∑

b0

πi (b0, a)π−i (b)π−i (b0)
∑

a0

πi (0, a0)

= (1 − ε)
∑

b0

πi (b0, a)π−i (b)π−i (b0).

If the lemma is true for k, it is also true for k + 1:

Pk+1(a, b | πi , π−i) = (1 − ε)k+1
∑

a0b0···akbk∈(Ai A−i)
k+1

πi (bk, a)π−i (ak, b)πi (0, a0)π−i (0, b0)

·
k∏

j=1

πi (b j−1, a j)π−i (a j−1, b j)

=
Eq. 7

(1 − ε)
∑

akbk

Pk(akbk | πi , π−i)πi (bk, a)π−i (b)

=
I .H .

(1 − ε)k+1
∑

akbk

∑

b′
π−i (b

′)π−i (bk)π−i (b)πi (b
′, ak)πi (bk, a)

= (1 − ε)k+1
∑

bk

π−i (bk)π−i (b)πi (bk, a)
∑

b′
π−i (b

′)
∑

ak

πi (b
′, ak)

= (1 − ε)k+1
∑

bk

π−i (bk)π−i (b)πi (bk, a).

��

3 Robust program equilibrium in the prisoner’s dilemma

Discussions of the program equilibrium have traditionally used the well-known pris-
oner’s dilemma (or trivial variations thereof) as an example to show how the program
equilibrium rationalizes cooperation where the Nash equilibrium fails (e.g., Tennen-
holtz 2004, Sect. 3; McAfee 1984; Howard 1988; Barasz et al. 2014). The present
paper is no exception. In this section, we will present our main idea using the exam-
ple of the prisoner’s dilemma; the next section gives the more general construction
and proofs of properties of that construction. For reference, the payoff matrix of the
prisoner’s dilemma is given in Table 1.

I propose to use the following decision rule: with a probability of ε ∈ (0, 1],
cooperate. Otherwise, act as your opponent plays against you. I will call this strat-

123

C. Oesterheld

Data: program profile (p1, p2)
Result: action ai ∈ {C, D}

1 if sample (0, 1) < ε then
2 return C
3 end
4 return sample(apply(p−i , (p1, p2)))
Algorithm 1: The εGroundedFairBot for player i . The program makes use of a
function sample which samples uniformly from the given interval or probability
distribution. It is assumed that ε is computable.

egy εGroundedFairBot. A description of the algorithm in pseudo-code is given in
Algorithm 1.3

The proposed program combines two main ideas. First, it is a version of FairBot
(Barasz et al. 2014). That is, it chooses the action that its opponent would play against
itself. As player −i would like player i to cooperate, εGroundedFairBot thus incen-
tivizes cooperation, as long as ε < 1/2. In this, it resembles the tit for tat strategy in
the iterated prisoner’s dilemma (IPD) (famously discussed by Axelrod 2006), which
takes an empirical approach to behaving as the opponent behaves against itself. Here,
the probability of the game ending must be sufficiently small (again, less than 1/2 for
the given payoffs) in each round for the threat of punishment and the allure of reward
to be persuasive reasons to cooperate.

The second main idea behind εGroundedFairBot is that it cooperates with some
small probability ε. First and foremost, this avoids running into the infinite loop that a
naive implementation of FairBot—see Algorithm 2— runs into when playing against
opponents who, in turn, try to simulate FairBot. Note, again, the resemblance with
the tit for tat strategy in the iterated prisoner’s dilemma, which cooperates when no
information about the opponent’s strategy is available.

Data: program profile (p1, p2)
Result: action ai ∈ {C, D}

1 return sample(apply(p−i , (p1, p2)))
Algorithm 2: The NaiveFairBot for player i

To better understand how εGroundedFairBot works, consider its behavior against
a few different opponents. When εGroundedFairBot faces NaiveFairBot, then both
cooperate. For illustration, a dynamic call graph of their interaction is given in Fig. 1.
It is left as an exercise for the reader to analyze εGroundedFairBot’s behavior against
other programs, such as another instance of εGroundedFairBot or a variation of
εGroundedFairBot that defects rather than cooperates with probability ε.

When playing against strategies that are also based on simulating their opponent, we
could think of εGroundedFairBot as playing a “mental IPD”. If the opponent program
decides whether to cooperate, it has to consider that it might currently only be simu-

3 This program was proposed by Abram Demski in a conversation discussing similar (but worse) ideas of
mine. It has also been proposed by Jessica Taylor at https://agentfoundations.org/item?id=524, though in a
slightly different context.

123

https://agentfoundations.org/item?id=524

Robust program equilibrium

Fig. 1 Dynamic call diagram
describing how
p1 = εGroundedFairBot
chooses when playing against
p2 = NaiveFairBot.

lated. Thus, it will choose an action with an eye toward gauging a favorable reaction
from εGroundedFairBot one recursion level up. Cooperation in the first “round” is an
attempt to steer the mental IPD into a favorable direction, at the cost of cooperating if
sample (0, 1) < ε already occurs in the first round.

In addition to proving theoretical results (as done below), it would be useful to
test εGroundedFairBot “in practice”, i.e., against other proposed programs for the
prisoner’s dilemmawith access to one another’s source code. I only found one informal
tournament for this version of the prisoner’s dilemma. It was conducted in 2013 by
AlexMennen on the online forum and community blog LessWrong.4 In the original set
of submissions, εGroundedFairBot would have scored 6th out of 21. The reason why
it is not a serious contender for first place is that it does not take advantage of the many
exploitable submissions (such as bots that decide without looking at their opponent’s
source code). Once one removes the bottom 9 programs, εGroundedFairBot scores
second place. If one continues this process of eliminating unsuccessful programs
for another two rounds, εGroundedFairBot ends up among the four survivors that
cooperate with each other.5

4 The tournament was announced at https://www.lesserwrong.com/posts/BY8kvyuLzMZJkwTHL/
prisoner-s-dilemma-with-visible-source-code-tournament and the results at https://www.lesserwrong.
com/posts/QP7Ne4KXKytj4Krkx/prisoner-s-dilemma-tournament-results-0.
5 For a more detailed analysis and report on my methodology, see https://casparoesterheld.files.wordpress.
com/2018/02/transparentpdwriteup.pdf.

123

https://www.lesserwrong.com/posts/BY8kvyuLzMZJkwTHL/prisoner-s-dilemma-with-visible-source-code-tournament
https://www.lesserwrong.com/posts/BY8kvyuLzMZJkwTHL/prisoner-s-dilemma-with-visible-source-code-tournament
https://www.lesserwrong.com/posts/QP7Ne4KXKytj4Krkx/prisoner-s-dilemma-tournament-results-0
https://www.lesserwrong.com/posts/QP7Ne4KXKytj4Krkx/prisoner-s-dilemma-tournament-results-0
https://casparoesterheld.files.wordpress.com/2018/02/transparentpdwriteup.pdf
https://casparoesterheld.files.wordpress.com/2018/02/transparentpdwriteup.pdf

C. Oesterheld

4 From iterated game strategies to robust program equilibria

We now generalize the construction from the previous section. Given any computable
strategy πi for a sequential game Gε , I propose the following program: with a small
probability ε sample from πi (0). Otherwise, act how πi would respond (in the sequen-
tial game Gε) to the action that the opponent takes against this program. I will call
this program εGroundedπiBot. A description of the program in pseudo-code is given
in Algorithm 3. As a special case, εGroundedFairBot arises from εGroundedπiBot by
letting πi be tit for tat.

Data: program profile (p1, p2)
Result: action ai ∈ Ai

1 if sample (0, 1) < ε then
2 return sample(πi (0))
3 end
4 return sample(πi (sample(apply(p−i , (p1, p2)))))
Algorithm 3: The εGroundedπiBot for player i . The program makes use of a func-
tion sample which samples uniformly from a given interval or a given probability
distribution. It is assumed that πi and ε are computable.

Again, our proposed program combines two main ideas. First, εGroundedπiBot
responds to how the opponent plays against εGroundedπiBot. In this, it resembles the
behavior of πi in Gε . As we will see, this leads εGroundedπiBot to inherit many of
πi ’s properties. In particular, if (like tit for tat) πi uses some mechanism to incentivize
its opponent to converge on a desired action, then εGroundedπiBot incentivizes that
action in a similar way.

Second, it—again—terminates immediately with some small probability ε to avoid
the infinite loops that NaiveπiBot—see Algorithm 4—runs into. Playing πi (0) in
particular is partly motivated by the “mental Gε” that εGroundedπiBot plays against
some opponents (such as εGroundedπ−iBots or Naiveπ−iBots). The other motivation
is to make the relationship between εGroundedπiBot and πi cleaner. In terms of the
strategies that are optimal against εGroundedπiBot, the choice of that constant action
cannot matter much if ε is small. Consider, again, the analogy with tit for tat. Even if tit
for tat started with defection, one should still attempt to cooperate with it. In practice,
however, it has turned out that the “nice” version of tit for tat (and nice strategies in
general) are more successful (Axelrod 2006, ch. 2). The transparency in the program
equilibriummay render such “signals of cooperativeness” less important—e.g., against
programs like Barasz et al.’s (2014, Sect. 3) FairBot. Nevertheless, it seems plausible
that—if only because of mental Gε-related considerations—in transparent games the
“initial” actions matter as well.

Data: program profile (p1, p2)
Result: action ai ∈ Ai

1 return sample(πi (sample(apply(p−i , (p1, p2)))))
Algorithm 4: The NaiveπiBot for player i . It is assumed that πi is computable.

123

Robust program equilibrium

We now ground these two intuitions formally. First, we discuss εGroundedπiBot’s
halting behavior. We then show that, in some sense, εGroundedπiBot behaves in G
like πi does in Gε .

4.1 Halting behavior

For a program to be a viable option in the “transparent” version of G, it should halt
against a wide variety of opponents. Otherwise, it may be excluded from PROG(G)

in our formalism. Besides, it should be efficient enough to be practically useful. As
with εGroundedFairBot, the main reason why εGroundedπiBot is benign in terms of
the risk of infinite loops is that it generates strictly less than one new function call in
expectation and never starts more than one. While we have no formal machinery for
analyzing the “loop risk” of a program, it is easy to show the following theorem.

Theorem 4 Letπi be a computable strategy for agameGε . Furthermore, let p−i be any
program (not necessarily in PROGi (G)) that calls apply(pi , (pi , p−i)) at most once
and halts with probability 1 if apply halts with probability 1. Then εGroundedπi Bot
and p−i halt against each other with probability 1 and the expected number of steps
required for executing εGroundedπi Bot is at most

Tπi + (Tπi + Tp−i)
1 − ε

ε
, (8)

where Tπi is the maximum number of steps to sample fromπi , and Tp−i is the maximum
number of steps needed to sample from apply(p−i , (εGroundedπiBot, p−i)) exclud-
ing the steps needed to execute apply(εGroundedπiBot, (εGroundedπiBot, p−i)).

Proof It suffices to discuss the cases in which p−i calls pi once with certainty, because
if any of our claims were refuted by some program p−i , they would also be refuted by
a version of that program that calls pi once with certainty. If p−i calls pi once with
certainty, then the dynamic call graphs of both εGroundedπiBot and p−i look similar
to the one drawn in 1. In particular, it only contains one infinite path and that path has
a probability of at most limi→∞(1 − ε)i = 0.

For the time complexity, we can consider the dynamic call graph as well. The
policy πi has to be executed at least once (with probability ε with the input 0 and with
probability 1−ε against an action sampled fromapply(p−i , (εGroundedπiBot, p−i)).
With a probability of (1 − ε), we also have to execute the non-simulation part of p−i

and, for a second time, πi . And so forth. The expected number of steps to execute
εGroundedπiBot is thus

Tπi +
∞∑

j=1

(1 − ε) j (Tπi + Tp−i),

which can be shown to be equal to the term in 8 by using the well-known formula∑∞
k=0 x

k = 1/(1 − x) for the geometric series. ��

123

C. Oesterheld

Note that this argument would not work if there were more than two players or if
the strategy for the iterated game were to depend on more than just the last opponent
move, because in these cases, the natural extension of εGroundedπiBot would have
to make multiple calls to other programs. Indeed, this is one of the reasons why the
present paper only discusses two-player games and iterated games with such short-
term memory. Whether a similar result can nonetheless be obtained for more than 2
players and strategies that depend on the entire past history is left to future research.

As special cases, for any strategy π−i , εGroundedπiBot terminates against
εGroundedπ−iBot and Naiveπ−iBot (and these programs in turn terminate against
εGroundedπiBot). The latter is especially remarkable. Our εGroundedπiBot termi-
nates and leads the opponent to terminate even if the opponent is so careless that it
would not even terminate against a version of itself or, in our formalism, ifPROG−i (G)

gives the opponent more leeway to work with simulations.

4.2 Relationship to the underlying iterated game strategy

Theorem 5 Let G be a game, πi be a strategy for player i in Gε , pi =
εGroundedπiBot and p−i ∈ PROG−i (G) be any opponent program. We define
π−i = apply(p−i , (pi , p−i)), which makes π−i a strategy for player −i in Gε . Then

EG
[
ui | pi , p−i

] = εEGε

[
ui | πi , π−i

]
.

Proof We separately transform the two expected values in the equation that is to be
proven and then notice that they only differ by a factor ε:

EGε

[
ui | πi , π−i

] =
lemma 2

∞∑

k=0

∑

ab∈Ai A−i

Pk,Gε (a, b | πi , π−i)ui (a, b)

=
lemma 3

∑

ab∈Ai A−i

πi (0, a)π−i (b)ui (a, b)

+
∞∑

k=1

∑

ab∈Ai A−i

(1 − ε)k
∑

b′∈A−i

π−i (b
′)πi (b

′, a)π−i (b)ui (a, b)

=
absolute

convergence

∑

ab∈Ai A−i

πi (0, a)π−i (b)ui (a, b)

+
∑

ab∈Ai A−i

∑

b′∈A−i

π−i (b
′)πi (b

′, a)π−i (b)ui (a, b)
∞∑

k=1

(1 − ε)k

=
sum of geo-
metric series

∑

ab∈Ai A−i

πi (0, a)π−i (b)ui (a, b)

+1 − ε

ε

∑

ab∈Ai A−i

∑

b′∈A−i

π−i (b
′)πi (b

′, a)π−i (b)ui (a, b).

123

Robust program equilibrium

The second-to-last step uses absolute convergence to reorder the sum signs. The last
step uses the well-known formula

∑∞
k=0 x

k = 1/(1 − x) for the geometric series.
Onto the other expected value:

EG
[
ui | pi , p−i

]

=
Eqs. 3, 2, 1

∑

ab∈Ai A−i

apply(pi , (pi , p−i), a)apply(p−i , (pi , p−i), b)ui (a, b)

=
def.s pi , π−i

∑

ab∈Ai A−i

⎛

⎝επi (0, a)+(1 − ε)
∑

b′∈A−i

π−i (b
′)πi (b

′, a)

⎞

⎠ π−i (b)ui (a, b)

= ε
∑

ab∈Ai A−i

πi (0, a)π−i (b)ui (a, b)

+(1 − ε)
∑

ab∈Ai A−i

∑

b′∈A−i

π−i (b
′)πi (b

′, a)π−i (b)ui (a, b).

Here, apply(pi , (pi , p−i), a) := apply(pi , (pi , p−i))(a). The hypothesis follows
immediately. ��

Note that the program side of the proof does not involve any “mental Gε”.
Using Theorem 5, we can easily prove a number of property transfers from πi to
εGroundedπiBot.

Corollary 6 Let G be a game. Let πi be a computable strategy for player i in Gε and
let pi = εGroundedπiBot.

1. If p−i ∈ B−i (pi), then apply(p−i , (pi , p−i)) ∈ Bs,c
−i (πi).

2. If π−i ∈ Bs,c
i (πi) and apply(p−i , (pi , p−i)) = π−i , then p−i ∈ B−i (pi).

Proof Both 1. and 2. follow directly from Theorem 5. ��
Intuitively speaking, Corollary 6 shows that πi and εGroundedπiBot provoke the

same best responses. Note that best responses in the program game only correspond
to best stationary computable best responses in the repeated game. The computabil-
ity requirement is due to the fact that programs cannot imitate incomputable best
responses. The corresponding strategies for the repeated game further have to be sta-
tionary because εGroundedπiBot only incentivizes opponent behavior for a single
situation, namely the situation of playing against εGroundedπiBot. As a special case
of Corollary 6, if ε < 1/2, the best response to εGroundedFairBot is a program that
cooperates against εGroundedFairBot because in a IPD with a probability of ending
of less than 1/2 a program that cooperates is the best (stationary computable) response
to tit for tat.

Corollary 7 Let G be a game. If (π1, π2) is a Nash equilibrium of Gε and π1 and π2
are computable, then (εGroundedπ1Bot, εGroundedπ2Bot) is a program equilibrium
of G.

Proof Follows directly from Theorem 5. ��

123

C. Oesterheld

4.3 Exploitability

Besides forming an equilibrium against many opponents (including itself) and incen-
tivizing cooperation, another important reason for tit for tat’s success is that it is
“not very exploitable” (Axelrod 2006). That is, when playing against tit for tat, it is
impossible to receive a much higher reward than tit for tat itself. We now show that
(in)exploitability transfers from strategies πi to εGroundedπiBots.

We call a game G = (A1, A2, u1, u2) symmetric if A1 = A2 and u1(a, b) =
u2(b, a) for all a ∈ A1 and b ∈ A2. If G is symmetric, we call a strategy πi for Gε

N -exploitable in Gε for an N ∈ R≥0 if there exists a π−i , such that

E
[
u−i | π−i , πi

]
> E

[
ui | π−i , πi

] + N .

We call πi N -inexploitable if it is not N -exploitable.
Analogously, in a symmetric game G we call a program pi N -exploitable for an

N ∈ R≥0 if there exists a p−i , such that

E
[
u−i | p−i , pi

]
> E

[
ui | p−i , pi

] + N .

We call pi N -inexploitable if it is not N -exploitable.

Corollary 8 Let G be a game and πi be an N-inexploitable strategy for Gε . Then
εGroundedπi Bot is εN-inexploitable.

Proof Follows directly from Theorem 5. ��
Notice that if – like tit for tat in the IPD – πi is N -inexploitable in Gε for all ε, then

we can make εGroundedπiBot arbitrarily close to 0-inexploitable by decreasing ε.

5 Conclusion

In this paper, we gave the following recipe for constructing a program equilibrium for
a given two-player game:

1. Construct the game’s corresponding repeated game. In particular, we consider
repeated games in which each player can only react to the opponent’s move in the
previous round (rather than the entire history of previous moves by both players)
and the game ends with some small probability ε after each round.

2. Construct a Nash equilibrium for that iterated game.
3. Convert each of the strategies into a computer program that works as follows (see

Algorithm 3): with probability ε do what the strategy does in the first round. With
probability 1 − ε, apply the opponent program to this program; then do what the
underlying strategy would reply to the opponent program’s output.

The result is a program equilibrium which we have argued is more robust than the
equilibria described by Tennenholtz (2004).More generally, we have shown that trans-
lating an individual’s strategy for the repeated game into a program for the stage game

123

Robust program equilibrium

in the way described in step 3 retains many of the properties of the strategy for the
repeated game. Thus, it seems that “good” programs to submit may be derived from
“good” strategies for the repeated game.

Acknowledgements I am indebted to Max Daniel and an anonymous referee for many helpful comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Anderlini, L. (1990). Some notes on Church’s thesis and the theory of games. Theory and Decision, 29(1),
19–52.

Axelrod, R. (2006). The Evolution of Cooperation. New York: Basic Books.
Barasz,M., et al. (2014). Robust cooperation in the prisoner’s dilemma: Program equilibrium via provability

logic. arxiv: 1401.5577.
Binmore, K. (1987). Modeling rational players: Part I. Economics and Philosophy, 3(2), 179–214.
Binmore, K. (1988). Modeling rational players: Part II. Economics and Philosophy, 4(1), 9–55.
Critch, A. (2016). Parametric bounded Löb’s theorem and robust cooperation of bounded agents.

arxiv:1602.04184.
Cutland, N. (1980). Computability: An introduction to recursive function theory. Cambridge: Cambridge

University Press.
van der Hoek, W., Witteveen, C., & Wooldridge, M. (2013). Program equilibrium—A program reasoning

approach. International Journal of Game Theory, 42(3), 639–671.
Howard, J. V. (1988). Cooperation in the prisoner’s dilemma. Theory and Decision, 24(3), 203–213.
McAfee, R. P. (1984). Effective computability in economic decisions. http://www.mcafee.cc/Papers/PDF/

EffectiveComputability.pdf. Accessed 10 Nov 2018.
Osborne, M. J. (2004). An introduction to game theory. Oxford: Oxford University Press.
Tennenholtz, M. (2004). Program equilibrium. Games and Economic Behavior, 49(2), 363–373.

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1401.5577
http://arxiv.org/abs/1602.04184
http://www.mcafee.cc/Papers/PDF/EffectiveComputability.pdf
http://www.mcafee.cc/Papers/PDF/EffectiveComputability.pdf

	Robust program equilibrium
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Strategic-form games
	2.2 Program equilibrium
	2.3 Repeated games

	3 Robust program equilibrium in the prisoner's dilemma
	4 From iterated game strategies to robust program equilibria
	4.1 Halting behavior
	4.2 Relationship to the underlying iterated game strategy
	4.3 Exploitability

	5 Conclusion
	Acknowledgements
	References

