
Abstract

should guide these actors in designing their agents, given that they may have competing goals? An
appealing solution concept in this setting is welfare-optimal learning equilibrium. This means that the
learning agents should constitute a Nash equilibrium whose payoff profile is optimal according to some
measure of total welfare (welfare function). In this work, we construct a class of learning algorithms in
this spirit called learning tit-for-tat (L-TFT). L-TFT algorithms maximize a welfare function according to
a specified optimization schedule, and punish their counterpart when they detect that they are deviating
from this plan. Because the policies of other agents are not in general fully observed, agents must infer
whether their counterpart is following a cooperative learning algorithm. This requires us to develop
new techniques for making inferences about counterpart learning algorithms. In two sequential social
dilemmas, our L-TFT algorithms successfully cooperate in self-play while effectively avoiding exploitation
by and punishing defecting learning algorithms.

1 Introduction
As the capabilities of machine learning systems improve, it is increasingly important to understand how to
achieve cooperation between systems deployed by actors with competing goals. Moreover, because intelligent
systems may continue to learn after they are deployed, designing agents who can cooperate requires accounting
for ways their policies may change post-deployment. In this paper, we look at the setting where multiple
learning agents are deployed to act on behalf of their respective principals.

There are three main goals of this work. The first is to articulate an appealing criterion for the design of
learning agents, which is welfare-optimal learning equilibrium. The second is to present a general approach to
designing learning agents who approximately fulfill this criterion, which we call learning tit-for-tat (L-TFT).
This framework is generic to agents who update their policies over time, rather than depending on a particular
class of reinforcement learning algorithms. The third is to illustrate some of the strategic considerations
which need to be addressed in the design of L-TFT agents. We do this by constructing an L-TFT agent
using model-free reinforcement learning algorithms, and examining its performance in two sequential social
dilemmas. This agent converges to welfare-optimal payoffs in self-play, while successfully avoiding exploitation
and punishing defecting learning algorithms.

A learning equilibrium is simply a Nash equilibrium of a learning game, in which strategies are learning
algorithms, and payoffs are the cumulative rewards associated with the profile of learning algorithms chosen
by each principal [Brafman and Tennenholtz, 2003]. Principals will want to choose the learning agents they
deploy strategically. This means that it is not enough for a learner to perform well against a specified set
of other players (e.g., Shoham and Leyton-Brown 2008). It is also not enough that a learner converges to
Nash equilibrium of the game which is being learned (e.g. Bowling and Veloso 2001, Conitzer and Sandholm
2007, Balduzzi et al. 2018, Letcher et al. 2018), as this does not guarantee that a player cannot benefit by
deviating from that profile (i.e., deploying a different learning algorithm).

Like other sequential games, learning games will generally have many learning equilibria. Independent
equilibrium selection on part of the principals may lead to poor performance. Thus, to guarantee socially
optimal payoffs, principals need to coordinate when designing their agents. L-TFT addresses this problem
via a welfare function. A welfare function measures the social value of a payoff profile; for instance, a simple
welfare function is the sum of the principals’ respective payoffs. An L-TFT agent learns a policy profile
which optimizes this welfare function, and punishes its counterpart if it detects that they are not doing
the same. Thus agents are incentivized to follow a learning algorithm which optimizes the welfare function.

1

Maxime Riché ¹Jesse Clifton ¹ ²

Towards cooperation in learning games

Suppose that several actors are going to deploy learning agents to act on their behalf. What principles

¹ Center on Long-Term Risk, ² Polaris Research Institute



Coordination can thus be achieved via coordination on a welfare function and on a class of learning algorithms
for optimizing it.

In our experiments, learners observe only the actions taken by their counterpart, and not their counterpart’s
(stochastic) policy. This requires us to construct L-TFT agents who model their counterpart’s learning
schedule based on their actions and conduct a hypothesis test as to whether it matches a cooperative learning
schedule. This in turn introduces incentives to exploit this testing procedure. We examine the performance
of L-TFT against an algorithm designed specifically to exploit the way in which it detects defections, as
well as its performance in self-play and against a naive selfish learner. Lastly, there is a strategic element in
choosing the sensitivity with which L-TFT’s hypothesis test detects defections. In Section 5.3, we examine
this element in a learning game between an L-TFT agent and a potential exploiter choosing how cautious to
be in deviating from a cooperative learning algorithm.

2 Related work
Learning equilibrium was first discussed (under that name) by Brafman and Tennenholtz [2003]. Their
construction of learning equilibria involves evaluating each of a finite set of policies in a finite stochastic game,
whereas the algorithms we focus on use incremental stochastic updates towards the welfare-optimal policy
profile.

Our online learning setting complements the setting in which agents are trained fully offline and then
deployed. This is the setting typically considered in applications of reinforcement learning to cooperation in
social dilemmas. For instance, Peysakhovich and Lerer [2017], Lerer and Peysakhovich [2017], Wang et al.
[2018] each develop methods in which punishment and cooperative policies are trained offline, and cooperation
at deployment time is sustained by the threat of punishment.

However, as many agents may learn post-deployment, the strategic aspects of learning itself — rather
than just policy selection — must be addressed. The manipulation of the learning of counterpart agents has
been explored in the literature on opponent-shaping [Foerster et al., 2018, Letcher et al., 2018]. Perhaps
the most similar to our approach is the variant of Foerster et al. [2018]’s learning with opponent learning
awareness which uses opponent modeling (LOLA-OM). LOLA-OM uses supervised learning to estimate the
policy followed by the other agent, and updates its own policy in a way that is intended to manipulate the
direction in which the other player updates their policy. On the other hand, our L-TFT uses opponent
modeling to infer whether the other agent is following a cooperative learning algorithm.

3 Preliminaries: Learning games
Consider a situation in which multiple agents interact with their environment over time, incrementally
updating the policies which they use to choose actions. These updates are controlled by their learning
algorithms, which are fixed by their principals before the agents begin interacting with the environment. It
is helpful to distinguish between two different games that are being played here. There is the base game,
which is defined by the dynamics of the environment, the reward functions of the agents, and the policies
available to each agent. In this paper, the “base game” will be a stochastic game (described below). There is
also the learning game, in which the principals simultaneously submit learning algorithms to be deployed
in the base game environment, and attain payoffs equal to some measure of cumulative reward.

We work with stochastic games [Littman, 1994], a generalization of Markov decision processes to the
multi-agent setting. We will assume only two players, i = 1, 2. We’ll refer to player i’s counterpart with
the index j. In a stochastic game, players simultaneously take actions at each time t ∈ N; observe a reward
depending on the current state; and the state evolves according to a Markovian transition function. Write the
state space as S and the action spaces as Ai. Let the reward functions be mappings ri : S ×A1 ×A2 → R,
with the reward to player i at time t given by Rti = ri(S

t, At1, A
t
2). Let Ht be the history of observations

until time t. We will assume that both agents fully observe the state and each others’ actions and rewards,
such that Ht = {(Sv, Av1, Av2, Rv1 , Rv2)}tv=0.

A policy πi gives a probability distribution over actions to be taken by player i at each state. Players
wish to learn the parameters θi of a policy which (in some sense) leads to large cumulative reward. Then we
define a learning algorithm.

2



Definition 3.1 (Learning algorithm). A learning algorithm for player i is a mapping σi from histories Ht to
parameters, i.e., σi : H → Θi, where H is the set of histories and Θi is the space of policy parameters for
player i.

A learning game is a game whose strategies are learning algorithms. We define payoffs via average
rewards. Define the value to player i of learning algorithm profile (σ1, σ2) starting from history ht as
Vi(h

t, σ) = lim infT→∞ T−1Eσ1,σ2

(∑t+T
v=t R

v
i | Ht

)
, where Eσ1,σ2

is the expectation taken with respect to
trajectories in which agents follow learning algorithms σ1, σ2 at each step. Let the initial state s0 be fixed so
that h0 = {s0}. Then a learning game is a game whose strategy spaces are spaces of learning algorithms Σ1,Σ2,
and whose payoffs are given by Vi(σ1, σ2) ≡ Vi(h0, σ1, σ2). A learning equilibrium is a Nash equilibrium of a
learning game:

Definition 3.2 (Learning equilibrium). Learning algorithm profile (σ1, σ2) is a learning equilibrium of the
learning game with learning algorithm spaces Σ1,Σ2 if

sup
σ′
1∈Σ1

V1(σ′1, σ2) ≤ V1(σ1, σ2) and sup
σ′
2∈Σ2

V2(σ1, σ
′
2) ≤ V2(σ1, σ2).

Finally, let a welfare function w be a function measuring the social value of different learning algorithm
profiles. A straightforward welfare function is the utilitarian welfare, w(σ1, σ2) = V1(σ1, σ2) + V2(σ1, σ2).
Others commonly discussed are the Nash welfare [Nash, 1950] and the egalitarian welfare (e.g., Kalai 1977).
We say that a profile of learning algorithms (σ1, σ2) is a welfare-optimal learning equilibrium if it is a learning
equilibrium and if it maximizes a welfare function w. We will construct learning algorithms which 1) optimize
a welfare function in self-play and 2) are minimally exploitable, in the spirit of welfare-optimal learning
equilibrium.

4 Learning tit-for-tat (L-TFT)
Tit-for-tat (TFT) famously enforces cooperation in the iterated Prisoner’s Dilemma by cooperating when its
counterpart cooperates, and defecting when they defect. Similarly, the “folk theorems” say that equilibria
in repeated games are constructed by specifying a target payoff profile, a profile of target strategies which
achieve this payoff profile, and a punishment strategy that is used to punish agents who deviate from the
target strategy (see Mailath et al. [2006] for a review).

Learning tit-for-tat (L-TFT) is a class of learning algorithms that are analogous to tit-for-tat for learning
games. For L-TFT, defection consists in playing a policy other than the current estimate of the cooperative
policy. This depends on a notion of cooperation and a class of algorithms for learning a “cooperative” policy.
These are encoded in a welfare function and a class of learning algorithms which learn an optimal policy with
respect to that welfare function. Thus an L-TFT agent punishes their counterpart when it detects that they
are not learning a welfare-optimal policy using a particular set of algorithms, and otherwise plays according
to their current estimate of the welfare-optimal policy.

Because policies are in general stochastic, and because we do not assume that policy parameters are
mutually visible, we also need a method for inferring whether the other player is following this cooperative
algorithm. In particular, we need to construct a test for the hypotheses:

H0 : My counterpart is following an algorithm for learning a welfare-optimal policy.
H1 : My counterpart is not following an algorithm for learning a welfare-optimal policy.

In order to be able to cooperate and punish, as well as detect defections by their counterpart, an agent i
playing L-TFT maintains the following policy estimates:

• A cooperative policy θC,ti trained to optimize the welfare function. This network is updated according
to a learning algorithm OC . In our experiments, OC corresponds to double deep Q-networks (DDQN;
Van Hasselt et al. 2015) trained on the reward signal Rt1 +Rt2;

• A punishment policy θP,ti , updated according to a learning algorithm OP . In our experiments, this
corresponds to DDQN trained on the reward signal −Rtj ;

3



• An estimate θ̂C,tj of the other player’s current policy which corresponds to the hypothesis that they are
playing according to a cooperative learning algorithm. This policy is estimated by specifying a class of
cooperative learning algorithms ΣCj ; finding the learning algorithm σ̂C,tj in this class which best fits the
other player’s actions; and taking θ̂C,tj = σ̂C,tj (Ht). In our experiments, the L-TFT agent assumes that
the learning algorithms ΣCj apply DDQN to Rt1 +Rt2 and follow a Boltzmann exploration policy with
an unknown initial temperature parameter. In order to obtain θ̂C,tj we must therefore estimate this
temperature parameter, which we do using an approximate maximum likelihood algorithm;

• An estimate θ̂D,tj of the other player’s current policy which corresponds to the hypothesis that they are
not playing according to a cooperative learning algorithm. This policy is estimated by specifying a
class of learning algorithms ΣD

j , finding the learning algorithm σ̂D,tj in this class which best fits the
other player’s actions; and taking θ̂D,tj = σ̂D,tj (Ht). In our experiments, we approximate this procedure
by obtaining θ̂D,tj via supervised learning on player j’s actions given the state.

Algorithm 1 summarizes L-TFT. Note that, while our experiments use a standard model-free learning
algorithm for the base algorithms OC ,OP , this framework is highly general. For instance, the players might
be model-based planners who choose actions by optimizing against an environment model with parameter
θi, which is updated over time. Moreover, with more sophisticated methods for inferring the other player’s
learning algorithm, L-TFT algorithms may also be constructed in games with partial state observability, or
uncertainty about the other players’ rewards.

Algorithm 1: Learning tit-for-tat (L-TFT)
Input: Observation history Ht, Other player punishment indicator being_punished, defection at

previous timestep indicator defection_detected, cooperative learning algorithm OC ,
punishment learning algorithm OP , defection hypothesis test HypothesisTest

punishing← is_punishing(Ht);
θP,ti ← OP (Ht);
if not being_punished or defection_detected then

θC,ti ← OC(Ht);
if defection_detected and not being_punished then

Ati ∼ πθP,t
i

(· | St);
Broadcast punishing;

else
Ati ∼ πθC,t

i
(· | St);

defection_detected← HypothesisTest(Ht);
return Ati, defection_detected

5 Experiments

5.1 L-TFT with DDQN + Boltzmann exploration
For the cooperative and punishment learning algorithms, we use DDQN applied to reward signals Rt1 +Rt2
and −Rtj , respectively. Agents follow Boltzmann exploration with respect to the estimated Q-function, i.e.,

πθi(ai | s; τi) ∝ exp
{∑

aj
Qθi(s, ai, aj)/τi

}
, where Qθi is a neural network with parameter θi. The initial

temperature τi is decayed according to a schedule g(·, τi), such that the temperature at each time step t is
τ ti = g(t, τi). (In our experiments g linearly decreases to a minimum value, and is constant thereafter.) Our
L-TFT algorithm punishes for one episode after it has detected a defection. We assume that players may
broadcast punishment to their counterpart. L-TFT agents do not update their cooperative and defecting
policy estimates if their counterpart broadcasts punishment, and do not punish if they are currently being
punished; for simplicity we suppress the dependence of agents’ policies and of the state on these broadcasts.

4



Testing for defection: L-TFTq

To decide whether to punish, our agent conducts a goodness-of-fit test for the hypothesis that the other
player is cooperating. A goodness-of-fit test (e.g., Lemeshow and Hosmer Jr 1982) compares the fit of a
simple model with the fit of a flexible model. If the fit of the simple model is sufficiently close to that of
the flexible model, the simple model is deemed adequate. Otherwise, the simple model is said to fit poorly.
Here, the simple model we assess is the hypothesis that the other player is using cooperative DDQN with
Boltzmann exploration. The flexible model we would like to compare to is that the other player is following
an arbitrary learning algorithm (which need not be cooperative). One approach to estimating this model
could be to solve the penalized maximum likelihood problem

θ̂D,1j , . . . , θ̂D,tj = arg max
θD,1
j ,...,θD,t

j

t∑
v=1

log πD
θD,v
j

(Av | Sv) + t−1λ

t∑
v=1

‖θD,vj ‖2, (1)

where πDθj is a class of neural networks that output a distribution over actions given a state. But solving 1
is computationally infeasible. As an approximation, we maintain a sequence {θ̂D,vj }tv=1 by taking gradient
steps on the supervised learning loss at each time step. We maintain a buffer of log likelihoods under the
hypothesis of defection, LD,t

j = {log πD
θ̂D,v
j

(Avj | Sv)}tv=t−t′ . (The estimate θ̂D,tj and log likelihood buffer LD,t
j

are not updated while the other player broadcasts punishment.)
On the other hand, to obtain likelihoods under the hypothesis of cooperation, player j is cooperating, we

need to estimate the initial temperature τj under the assumption that player j is following a cooperative
learning algorithm for some τj . We would thus like to solve

τ̂ tj = arg max
τj

t∑
v=1

log πθC,v
j
{Av | Sv; g(v, τj)} . (2)

As a tractable approximation to the solution of problem 2, we maintain an estimated cooperative Q-
network θ̂C,tj via DDQN updates on reward signal Rt1 + Rt2 (only when not being punished). We track
the likelihood of player j’s actions under θ̂C,tj over a set of candidate values for τ ′j ; and take τ̂ tj to be
the highest-likelihood such value at time t. For each τ ′j , we also maintain a buffer of log likelihoods1

LC,t
j (τ ′j) = {log πC,vj

{
Avj | Sv; g(v, τ ′j)

}
}tv=t−t′ . (Estimate θ̂C,tj and buffers LC,t

j (τ ′j) are again not udpated
while the opponent broadcasts punishment.)

Finally, the hypothesis test is conducted at the end of each episode by bootstrapping [Efron, 1992] the
difference in mean log likelihoods over buffers LC,t

j (τ̂ tj ) and LD,t
j . The hypothesis of cooperation is rejected

when the qth quantile of this distribution is less than 0. This hypothesis test is summarized in Algorithm 2.
We refer to the variant of L-TFT which uses this test as L-TFTq.

Exploiting L-TFTq

We also construct exploiter agents to play against L-TFTq. These agents assume their counterpart is L-TFTq
for a particular value of q, simulate the hypothesis test used by L-TFTq, and act (myopically) depending on the
result of the test. That is, if an exploiter predicts that a defection would be detected by a test with cutoff q,
it acts according to the cooperative policy; otherwise, it takes a selfish action (according to a DDQN network
trained on its reward signal only). Call this agent Exploiterq. The networks maintained by Exploiterq
are: 1) a cooperative network trained on Rt1 +Rt2, 2) a selfish network trained on Rti, 3) an estimate of its
own policy under the hypothesis that it is cooperating θ̃C,lj , and 4) an estimate of its own policy under the
hypothesis that it is defecting θ̃D,lj .

1When computing these likelihoods, we set the Q-value of an action equal to the mean of all Q-values which are within some
distance of one another (in our experiments, 0.25). This is important in Coin Game, where there are multiple paths of equal
length to a coin. Thus, although estimated Q-values along different paths may be very similar, these differences are amplified
by the exponentiation used in Boltzmann exploration when the temperature is small, possibly leading to false detections of
defection.

5



Algorithm 2: Hypothesis test for L-TFTq
Input: Defection log likelihood buffer LD

j , cooperative log likelihood buffer LC
j (τ̂ tj ), cutoff quantile q,

test statistics buffer {∆(q),v
j }t−1

v=t−u
/* t indexes episodes */
∆j ← ∅
for b = 1, . . . , B do

LC,b
j ← Bootstrap

{
LC,t
j (τ̂ tj )

}
LD,b
j ← Bootstrap(LD,t

j )

LC,bj ← B−1
∑
`Cj ∈L

C,b
j

`Cj

LD,bj ← B−1
∑
`Dj ∈L

D,b
j

`Dj

∆j ←∆j ∪
{
LC,bj − LD,bj

}
∆

(q),t
j ← Percentile(∆j , q)

∆̄
(q),t
j ← u−1

∑t
v=t−u ∆

(q),v
j // Average previous test statistics for stability

if ∆̄
(q),t
j < 0 then
defection_detected← True

else
defection_detected← False

return defection_detected

5.2 Environments
The environments we use are the iterated Prisoner’s Dilemma (IPD) and the Coin Game environment
[Lerer and Peysakhovich, 2017]2. In both cases, episodes are 20 timesteps long. Our version of the IPD
involves repeated play of the matrix game with expected payoffs as in Table 1. Policy πθi gives the
probability of each action given player j’s action at the previous timestep. In our implementation, this
means that the state passed to the estimated Q-function is the profile of actions taken at the last step.

Player 2

C D

Player 1
C −1,−1 −3, 0

D 0,−3 −2,−2

Table 1: Prisoner’s Dilemma expected payoffs.
Figure 1: Coin Game Payoffs.

Write the expected reward function, corresponding to the payoffs in Table 1, as ri(ai, aj). We introduce
randomness by generating rewards as Rti ∼ N

{
ri(A

t
i, A

t
j), 0.1

}
.

In the Coin Game environment [Lerer and Peysakhovich, 2017] depicted in Figure 1, a Red and Blue
player navigate a grid and pick up randomly-generated coins. Each player gets a reward of 1 for picking up a
coin of any color. But, a player gets a reward of −2 if the other player picks up their coin. This creates a
social dilemma in which the socially optimal behavior is to only get one’s own coin, but there is incentive to
defect and try to get the other player’s coin as well.

2These experiments were implemented using extensions of OpenAI Gym [Brockman et al., 2016] and the SLM Lab framework
for reinforcement learning [Keng and Graesser, 2017].

6



The state space consists of encodings of each player’s location and the location of the coin. We use
networks with two convolutional layers and two fully connected feedforward layers.

5.3 Results

Figure 2: Performance of L-TFT0.95 in the IPD (left) and Coin Game (right). Counterparts are L-TFT0.95

(top), Exploiter0.95 (bottom). For IPD, the prob axis is the probability of mutual cooperation (cc) and
mutual defection (dd), For Coin Game, the pick_own axis is the proportion of times the coin is picked by
the agent of its own color (i.e., the agents cooperate). The payoffs axis shows a moving average of player
rewards after each episode. These values are averaged over 10 replicates and bands are (min, max) values.
Note that temperature values are constant in the IPD after 3000 episodes and in the Coin Game after 30000
episodes.

Figure 2 shows the performance of L-TFTq in self-play, against Exploiterq (i.e., an exploiter with
a correctly-specified value of q). L-TFTq is able to converge to welfare-optimal payoffs in self-play and
against the Exploiterq (suggesting that the exploiter eventually anticipates being punished if it defects,
and therefore chooses to cooperate). This indicates that our hypothesis test effectively detects defection.
L-TFTq also effectively punishes a naive selfish learner (i.e., one trained with DDQN on Rtj); see Figure 3 in
the Supplementary Materials. Punishing the naive learner comes as the expense of low payoffs for L-TFT.
However, this is the expected behavior, just as the punishments which enforce equilibria in classical iterated
games can lead to low payoffs for each player.

Strategic choice of q

While our previous experiments with Exploiterq assumed that the exploiter knew the cutoff quantile used in
L-TFT’s hypothesis test, this seems like too strong an assumption for real-world agents deployed by different
principals. Here we consider a game played between 1) one principal deciding which value of q1 to specify for
its L-TFTq1 agent, and 2) a second principal deciding among L-TFTq2 and Exploiterq2 for different values of
q2. Table 2 shows the average payoffs to each player over a time horizon of 4000 steps.

7



q in L-TFTq q in Exploiterq
0.55 0.75 0.95 0.55 0.75 0.95

L-TFT0.55 −1.28,−1.2 −0.97,−1.48 −0.98,−1.38 −1.03,−1.41 −1.06,−1.43 −0.91,−1.81

L-TFT0.75 −1.44,−0.97 −1.13,−1.1 −1.09,−1.13 −1.19,−1.11 −1.25,−1.11 −1.21,−1.35

L-TFT0.95 −1.21,−1.06 −1.12,−1.1 −1.11,−1.11 −1.2,−1.06 −1.27,−1.03 −1.41,−0.98

Table 2: Empirical payoff matrix for a learning game in which the base game is an iterated Prisoner’s
Dilemma played for 4000 timesteps. The row player chooses L-TFTq for q ∈ {0.55, 0.75, 0.95}. The column
player chooses either L-TFTq or Exploiterq for q ∈ {0.55, 0.75, 0.95}. Cells give (row player payoffs, column
player payoffs), where payoffs are the mean of rewards over the span of the game, averaged over 10 replicates.
Standard errors are all less than or equal to 0.1.

It turns out that the unique Nash equilibrium of this empirical learning game3 is one in which row player
chooses L-TFT0.95 with probability 0.88 and L-TFT0.55 with probability 0.12, while the column player chooses
L-TFT0.55 with probability 0.88 and Exploiter0.95 with probability 0.12. The expected payoffs in equilibrium
are −1.23,−1.08 for row and column player, respectively. This suggests that L-TFTq is vulnerable to some
amount of exploitation on short time horizons, although still does better than the mutual-defection payoff of
−2. On the other hand, L-TFTq1 converges to mutual cooperation4 against both L-TFTq2 and Exploiterq2
for each value of q1, q2. Thus L-TFT avoids exploitation over longer time horizons in this learning game.

6 Discussion
Powerful learning agents should be designed to avoid conflict when they are eventually deployed. One way
to avoid such outcomes is to construct profiles of agents which avoid conflict and which rational principals
prefer to deploy. One appealing criterion for joint rationality on part of the principals is welfare-optimal
learning equilibrium (rather than mere convergence to Nash equilibrium of the base game, for instance). We
have presented a class of learning algorithms, learning tit-for-tat (L-TFT), which approximately implement
welfare-optimal learning equilibrium in the sense of converging to welfare-optimal payoffs in self-play and
discouraging exploitation.

Many open questions remain. First, while we have relied on a welfare function, we have said little about
which welfare function should be used. The ideal scenario would be for the principals of the reinforcement
learning systems in question to coordinate on a welfare function before deploying these systems. Moreover, it
may be necessary to develop novel reinforcement learning methods tailored for the optimization of different
welfare functions. For instance, our use of DDQN with the utilitarian welfare is unproblematic, as the
sum of the players’ reward signals still admits a Bellman equation for their cumulative reward. But the
welfare functions other than the utiliarian welfare (such as the Nash welfare [Nash, 1950]) do not admit a
Bellman equation (see the discussion of nonlinear scalarization functions in Roijers et al. [2013]’s review of
multi-objective reinforcement learning).

Many generalizations of our setting can be studied, including partial observability and more than two
agents. Perhaps the most restrictive of our assumptions is that the agents’ reward functions are known to
each other. A complete framework should address the problem of incentives to misrepresent one’s reward
function to improve one’s payoffs in the welfare-optimal policy profile. One direction would be to allow for
uncertainty about the other players’ reward functions, analogously to Bayesian games [Harsanyi, 1967] but
in a way that is tractable in complex environments. This may in turn require the development of novel
techniques for inference about other players’ preferences in complex environments; see Song et al. [2018],
Yu et al. [2019] for recent steps in this direction. Another approach to reward uncertainty would be to use
mechanism design techniques [Nisan et al., 2007, Ch. 9] to incentivize the truthful reporting of the principals’
utility functions.

3Computed using the Nashpy Python library [Knight and Campbell, 2018].
4Payoffs averaged over the final 10 episodes equal to −1± 0.03.

8



Acknowledgements
Many thanks to Tobias Baumann, Anthony DiGiovanni, Flo Dorner, Daniel Kokotajlo, Alex Lyzhov, and
Johannes Treutlein for helpful comments on drafts of this document.

References
David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel. The
mechanics of n-player differentiable games. arXiv preprint arXiv:1802.05642, 2018.

Michael Bowling and Manuela Veloso. Rational and convergent learning in stochastic games. In International
joint conference on artificial intelligence, volume 17, pages 1021–1026. Lawrence Erlbaum Associates Ltd,
2001.

Ronen I Brafman and Moshe Tennenholtz. Efficient learning equilibrium. In Advances in Neural Information
Processing Systems, pages 1635–1642, 2003.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym, 2016.

Vincent Conitzer and Tuomas Sandholm. Awesome: A general multiagent learning algorithm that converges
in self-play and learns a best response against stationary opponents. Machine Learning, 67(1-2):23–43,
2007.

Bradley Efron. Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics, pages
569–593. Springer, 1992.

Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor Mordatch.
Learning with opponent-learning awareness. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pages 122–130. International Foundation for Autonomous
Agents and Multiagent Systems, 2018.

John C Harsanyi. Games with incomplete information played by “bayesian” players, i–iii part i. the basic
model. Management science, 14(3):159–182, 1967.

Ehud Kalai. Proportional solutions to bargaining situations: interpersonal utility comparisons. Econometrica:
Journal of the Econometric Society, pages 1623–1630, 1977.

Wah Loon Keng and Laura Graesser. Slm lab. https://github.com/kengz/SLM-Lab, 2017.

Vincent Knight and James Campbell. Nashpy: A python library for the computation of nash equilibria.
Journal of Open Source Software, 3(30):904, 2018.

Stanley Lemeshow and David W Hosmer Jr. A review of goodness of fit statistics for use in the development
of logistic regression models. American journal of epidemiology, 115(1):92–106, 1982.

Adam Lerer and Alexander Peysakhovich. Maintaining cooperation in complex social dilemmas using deep
reinforcement learning. arXiv preprint arXiv:1707.01068, 2017.

Alistair Letcher, Jakob Foerster, David Balduzzi, Tim Rocktäschel, and Shimon Whiteson. Stable opponent
shaping in differentiable games. arXiv preprint arXiv:1811.08469, 2018.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In Machine
learning proceedings 1994, pages 157–163. Elsevier, 1994.

George J Mailath, J George, Larry Samuelson, et al. Repeated games and reputations: long-run relationships.
Oxford university press, 2006.

John F Nash. The bargaining problem. Econometrica: Journal of the Econometric Society, pages 155–162,
1950.

9



Noam Nisan et al. Introduction to mechanism design (for computer scientists). Algorithmic game theory, 9:
209–242, 2007.

Alexander Peysakhovich and Adam Lerer. Consequentialist conditional cooperation in social dilemmas with
imperfect information. arXiv preprint arXiv:1710.06975, 2017.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-objective
sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113, 2013.

Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and logical
foundations. Cambridge University Press, 2008.

Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano Ermon. Multi-agent generative adversarial imitation
learning. In Advances in neural information processing systems, pages 7461–7472, 2018.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. arXiv
preprint arXiv:1509.06461, 2015.

Weixun Wang, Jianye Hao, Yixi Wang, and Matthew Taylor. Towards cooperation in sequential prisoner’s
dilemmas: a deep multiagent reinforcement learning approach. arXiv preprint arXiv:1803.00162, 2018.

Lantao Yu, Jiaming Song, and Stefano Ermon. Multi-agent adversarial inverse reinforcement learning. arXiv
preprint arXiv:1907.13220, 2019.

Supplementary Materials

L-TFT vs. naive DDQN

Figure 3: Performance of L-TFT0.95 in the IPD (left) and Coin Game (right) against a DDQN learner trained
on Rtj (naive). For IPD, the prob axis is the probability of mutual cooperation (cc) and mutual defection
(dd), For Coin Game, the pick_own axis is the proportion of times the coin is picked by the agent of its
own color (i.e., the agents cooperate). The payoffs axis shows a moving average of player rewards after
each episode. These values are averaged over 10 replicates and bands are (min, max) values. Note that
temperature values are constant in the IPD after 3000 episodes and in the Coin Game after 30000 episodes.

10




